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Abstract 
 
The submited textbook is prepared for students of Faculty of mechanical engineering and 
Faculty of applied sciences at the University of West Bohemia in Pilsen. It can serve as 
background for studying objects „Mechanics 3”, „Mathematical theory of vibration” and 
partly for „Computational methods in mechanics”.  It is supossed that the reader has 
knowledge from dynamics of mass point, rigid body and basic kinematics. This textbook 
contains some special parts from rotation and spherical motion for which dual description by 
Euler’s and Cardan’s angles is used. Chapter Analytical mechanics brings some original ideas 
esspecially virtual work principle for systems having higher number of generalized 
coordinates then number of degrees of freedom whose application results are compared with 
those ones obtained by mixed Lagrange’s equations. Strictly matrix notation is used in whole 
textbook and for this reason the skills of matrix calculus is required.   
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1. Dynamics of rigid body rotation 
 
The rotating rigid body is depicted in fig. 1.1. The stationary coordinate system is marked by 
x, y, z while moving coordinate system connected with body is marked by ζηξ ,, .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.1 
 

The axis ξ  of the moving (rotating) system is identical with the axis x of the stationary 
system. The vector of angular speed ω and angular acceleration α are collinear with ξ and x. 
Let us introduce the constant inertia matrix of the body with respect of the moving coordinate 
system ζηξ ,,  having the form    
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The individual components of inertia matrix are moments and products of inertia with respect 
to coordinate system ζηξ ,, . Body moment of momentum can be expressed in form  

JωL = , (1.2) 

where  [ ]T0,0,ω=ω  is vector of result angular speed. Let us remind that the quantities in 
(1.2) are expressed in the coordinate system ζηξ ,, in spite of the fact that the vector ω  has 
the same coordinates in both systems. The body momentum can be expressed as 

,SS mm rωvH ×==  (1.3) 

where Sv  is velocity vector of the centre of gravity. From the Fig. 1.1 we can see the varying 
direction of the momentum vector. Kinetic energy of the rotating body can be written 
according to the well known relation   
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,
2
1 LωT

kE =  (1.4) 

which respecting (1.2) can be rewritten in form  

.
2
1 JωωT

kE =  (1.5) 

Inertia effects on the rotating body are composed of nD and tD and the moment of inertia 
forces  DM  see Fig. 1.1. To obtain these quantities let us remind the important relations of 
basic dynamics of mass point system. The first expresses change of momentum in the integral 
and differential form, respectively 

,       resp.     
0

0 ∫ ==−
t

dt FHFHH &  (1.6) 

where H is total momentum of the mass point system (mass body in this case) and F is 
resultant of the external forces treating with the body. The second relation corresponds to the 
change of moment of momentum in the integral and differential form, respectively 

,      resp.,
0

0 MLMLL ==− ∫ &
t

dt  (1.7) 

where L is resultant moment of momentum of the mass point system (mass body in this case) 
and M is the resultant moment of external forces and moments. (To transfer external forces to 
one point we have to add corresponding moments). Following d'Alembert’s principle we can 
write the condition of external and inertia effect balance which can be expressed by two 
relations  

,, 0MM0DF =+=+ D  (1.8) 

where D is resultant inertia force and DM  is resultant moment of inertia forces. Respecting 
(1.8) we can rewrite the second relations in (1.6) and (1.7) into the forms 

LMHD && −=−= D, . (1.9) 

These quantities are understood as replacement in the centre of gravity or in fixed point (e.g. 
in the origin of coordinate system). The resultant inertia force we can obtain according to 
(1.9) and respecting (1.3) in form (mass is constant)  

( ) ,tntnS mm DDaavD +=+−=−= &   (1.10) 

where 

ωa === ωω ,2ea nn , (1.11) 

and  

αa === αα ,ea tt  

are normal and tangential accelerations of centre of gravity, respectively and  

ttnn mm aDaD −=−=         resp.    ,  (1.12) 

are corresponding normal and tangential inertia force, respectively. Let us remind again that 
both inertia forces are acting in the origin of the coordinate system. Directions of these inertia 
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forces are depicted in Fig. 1.1. Let us turn back to the second relation in (1.9) which serves to 
the expression of moment of inertia forces. According to this relation the vector of resultant 
inertia forces can be obtained from the differentiation of moment of momentum with respect 
to time. The differentiation has to be performed in the stationary coordinate system. 
Respecting fact that the moment of momentum (1.2) is expressed in the moving coordinate 
system connected with rotating body we can rewrite the second relation in (1.9) into form  

LωLLM ×−−=−=
ξηζ

&&
D , (1.13) 

where 
ξηζ

L&− means the derivation of moment of momentum expressed in rotating coordinate 

system ξηζ  with respect to time. This relation we can explain in the simplest way: The 
vector a expressed both in stationary coordinate system xyz  generated by the base  kji ,, and 
in the moving coordinate system ξηζ generated by the base .,, 321 eee  

.332211 eeekjia aaaaaa zyx ++=++=  (1.14) 

Differentiating both sides of (1.14) with respect to time and respecting that the base kji ,, is 
constant we can come to 

.333322221111 eeeeeekji &&&&&&&&& aaaaaaaaa zyx +++++=++  (1.15) 

Taking into account the constant magnitude of unit vectors 321 ,, eee , their differentiations 
with respect to time can be expressed in the simple way as  

.3,2,1, =×= iii eωe&  (1.16) 

After substitution of the last relations into (1.15) it follows  

( ).332211332211 444 3444 21
&&&&&&

a

eeeωeeekji aaaaaaaaa zyx ++×+++=++  (1.17) 

The Eq. (1.17) can be simply rewritten into matrix form 

,aωaa ×+= ξηζ&&  (1.18) 

which proves a validity of (1.13). Substitution (1.2) into (1.13) we can come to  
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Examples on rotating motion 
Example 1.1 
The ring of the radius r having mass m is depicted in Fig. 1.2. This ring is linked with 
foundation by four elastic felloes clamped at the ends to the foundation and to the ring, 
respectively.  Determine the eigenfrequency of the ring torsional vibration. Let us suppose 
small displacements, massless felloes and ring thickness.    
 

Inputs: m, r, E-Young modulus of felloes, J-moment of inertia of the felloe cross section with 
respect to the central axis of the cross section perpendicular to the picture plane 
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Fig. 1.2 

Solution: 

For the reason that ring rotates about central axis of inertia the inertial forces tn DD  a  are 
equal to zero ( )0=e . The moment of inertia forces has only one nonzero component in the 
direction of rotation axis αξI− . For brevity we leave out the subscript ξ . As a starting point 
we determine stiffness k of one felloe. Let us load the beam with zero slopes at both ends 
according to Fig. 1.2 and get the relation for displacement and corresponding stiffness in the 
form  

.12
12 3

3

r
EJk

EJ
Frw =⇒=  (1.20) 

Respecting assumption of small displacements we can express the bend at the end of beam in 
form ϕrw = . The moment of reversible forces can be written as 

.44 2ϕkrkwrMV ==  (1.21) 

Let us substitute (1.20) into the last relation and have  

.48 ϕ
r
EJMV =  (1.22) 

Neglecting the ring thickness we can express come to the moment of inertia in form  

.2mrI =  (1.23) 

From the moment balance condition and from the relation ϕα &&=  we can obtain the equation 
of motion describing torsion vibration of the ring 

.0482 =+ ϕϕ
r
EJmr &&  (1.24) 

Dividing the last equation by 2mr  we can come to 



 

8 
 

,048

2

3 =+

Ω

ϕϕ
321

&&
mr

EJ  (1.25) 

from which follows the ring torsion eigenfrequency in form 

.48
3mr

EJ
=Ω  (1.26) 

 
Example 1.2 

The bar 3 rotating by constant angle speed 0ω  about ξ  axis is depicted in Fig. 1.3. One end of 
the bar is connected to the element 2 by spherical coupling. Another end is linked with base 
frame by massless fibre of the length b.  Let us determine the slope angle ϕ . In case the angle 
achieves its maximal value maxϕ let us determine the force acting in the fibre.  

 
 

 
 

 
 

 
 
 

 
 

 

 

Fig. 1.3 

 

Solution: 
Only one of the inertia forces (1.12) is nonzero 

ϕω sin
2

2
0mlDn = . (1.27) 

Simultaneously only one component of the moment of inertia forces (1.19) is nonzero  

.2
0ωξηζ DM D =  (1.28) 

These both inertia effects are marked by red colour in Fig. 1.3.  To obtain the inertia force 
moment (1.28) we have to determine product of inertia ξηD . From Fig. 1.4 we can come to 
the relation (the bar is prismatic and homogeneous)   
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Fig. 1.4 
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Firstly we will suppose that the angle slope lies in the region   

( ) .arcsin,,0 maxmax l
b

=∈ ϕϕϕ  (1.30) 

The conditions of the dynamic balance have form 
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 (1.31) 

It follows from the equation (1.31) that the vertical coupling force remains constant having 
value .mgA −=ξ  The coupling force ηA  can be obtained from the second equation (1.31) but 
this force depends on the angle slope ϕ . For this reason it is necessary at the earliest to solve 
the third equation (1.31) which has after small arrangement form 
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3

sin
2
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gl ϕωϕ  (1.32) 

This equation can have (but need not) these solutions: 

a) πϕϕ ,00sin =⇒= , (1.33) 

where the solution πϕ =sin corresponds to the unstable position and moreover does not lie in 
the required region given by the fibre length. We will not take into account this solution. The 
next solution has form 

b) ,
2
3cos0

2
cos

3 2
0

2
0

ω
ϕϕω

l
ggl

=⇒=−  (1.34) 
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but this solution need not exist in case the value 2
02

3
ωl
g lies out of the region 1,1−  (the 

fraction is positive and for this reason the region is reduced to  ( 1,0 ). If this value lies in 
region ( 1,0  we can write 

.
2
3arccos 2

0









±=

ω
ϕ

l
g  (1.35) 

The interesting conclusion follows from the relation (1.34). In case the angle speed is small 
but nonzero the angle slope stays zero until the critical value of the angle speed 

( .cos1
2
3

2
0

ϕ
ω

==
l
g )  

.
2
3

,0 l
g

krit ±=ω  (1.36) 

In case the angle slope would be larger than
l
barcsinmax =ϕ , it is necessary to respect nonzero 

value of the reaction force in fibre B and take into account the angle slope value equal to maxϕ . 
Solution of the set of equations (1.31) in this case contains coupling forces .  a  , BAA ηξ  
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2. Dynamics of the body spherical motion 
 
The spherical motion is defined in such a way, that one point of the body is fixed. Let us focus 
on this problem from the kinematic point of view. Rigid body has 6 degrees of freedom 
(DOF) in 3D space. It means 3 independent displacements and 3 rotations. If one point of the 
body is fixed 3 displacements are eliminated and 3 rotations remain. These rotations can be 
described by various manners.  One of most used is description by means of Euler’s angles 
[1].  
 
 
Application of Euler’s angles 
 
These angles describing spherical motion of body are depicted in Fig. 2.1   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.1 
 

Let us assume that the body is connected with movable coordinate systemξηζ , which was 
originally identical with stationary coordinate system xyz . The movable system achieved the 
current position by means of three sequential rotations.  
 
a) rotation about z axis -angle ψ  (precession angle)  
b) rotation about \\\ xx ≡ axis -angle ϑ  (nutation angle) 
c) rotation about \\\\\ zz ≡≡ξ  axis -angle ϕ  (rotation angle) 
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Time derivations of the mentioned angles (angle speeds) correspond to the individual 
rotations whose composition forms the spherical motion. For moment of momentum and 
kinetic energy expression of the arbitrary form body doing spherical motion it is useful to 
express these quantities in the coordinate systemξηζ , because the body inertia matrix is time 
independent in this system. (Kinetic energy is spatial invariant independent of space in which 
is expressed). Vector of resulting angle speed expressed in coordinate systems ξηζ and xyz , 
respectively, has form  

.
cos

cossinsin
sinsincos

    resp.       ,
cos

sincossin
sinsincos

















+
−
+

=
















+
−

+
=

ϑϕψ
ψϑϕψϑ
ψϑϕψϑ

ϑψϕ
ϕϑϕϑψ
ϕϑψϕϑ

ξηζ

&&

&&

&&

&&

&&

&&

xyzωω  (2.1) 

Body inertia matrix ξηζJ was already described in the first chapter (relation (1.1)). Moment of 
momentum can be written in similar form as (1.2) 
 

ξηζξηζ ωJL =  (2.2) 

and momentum in similar form to (1.3) 

.SS mm rωvH ×== ξηζ  (2.3) 

Now it is important to remind the fact that both last vector quantities are expressed in 
coordinate systemξηζ . In the similar way as in the first chapter the kinetic energy can be 
written down as 

ξηζξηζξηζξηζ ωJωLω TT
kE

2
1

2
1

== . (2.3) 

The inertia effects (inertia force and moment of inertia forces) can be determined according to 
the relations (1.9) and (1.13), respectively 

LMHD && −=−= D, , (2.4) 

LωLLM ×−−=−=
ξηζ

&&
D . (2.5) 

These relations are complicated for the bodies of general form. For this reason we focus on 
rotationally symmetrical bodies and the presented methodology will be a little bit simpler.   
 
 
Use of modified Euler’s angles [2] 
 
Respecting that the body own rotation is going on the axis of body symmetry we can say that 
moments of inertia are identical 

.III == ηξ   (2.6) 

All products of inertia are zeros, too. It means that body inertia matrix is diagonal and has 
form 
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where symbol oI marks an axial moment of inertia with respect to axis of body symmetry.  In 
this case the coordinate system ,,, \\\\\\ zyx  is sufficient because rotation ϕ  does not change 
the body inertia matrix.   Then the corresponding angles are called by modified Euler’s 
angles. These angles are depicted in Fig. 2.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.2 
 
The angle speed vector can be then expressed in “two comma coordinate system” in form  
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To express the moment of inertia forces according to (2.5) it is necessary to aware of fact that 
the motion of “two comma coordinate system” in relation to base frame is not described by 
the angle speed vector  ξηζω but by the vector 
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The “two comma coordinate system” does not rotate by the angle speed ϕ&  in relation to the 
base frame. Moment of momentum vector expressed in “two comma coordinate system” has 
form 

.\\\\
ξηζξηζξηζ ωJωJL ==  (2.10) 
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To obtain the resulting moment of inertia forces it is necessary to perform the derivation of 
the moment of momentum according to the relation  

.\\\\\\ LΩLLM ×−−=−= &&
D  (2.11) 

Momentum can be expressed as  

,\\
SS mm rΩvH ×==  (2.12) 

and kinetic energy can be written in form 

ξηζξηζξηζξηζξηζξηζ ωJωωJωLω \\\\

2
1

2
1

2
1 TTT

kE === . (2.13) 

All vector and tensor quantities (inertia matrix is in fact tensor) are expressed in “two comma 
coordinate system”.   

 
Note: 

Tensor is mathematical expression of some quantity which subjects to the transformation 
corresponding to the change of the coordinate system. Zero order tensor is scalar being 
invariant to coordinate system change. Tensor of the first order is vector subjected to tensor 
(vector) transformation (vector transformation can be performed by pre-multiplying by 
transformation matrix). Second order tensor can be expressed as system of quantity 
coordinates assembled in the form of matrix. The tensor transformation corresponds to pre-
multiplying by transformation matrix and post-multiplying by transposed transformation 
matrix. The transformation of higher order tensors cannot be performed by means of  matrix 
calculus. It is necessary in this case to use a subscript and superscript symbolism [1].          

 
Having performed the indicated operations we can come to 
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Use of the Cardan’s angles 
As an alternative to the description of the spherical motion by means of Euler’s angles we will 
present description using Cardan’s angles. Let us imagine that the movable system in Fig. 2.3 
achieved the current position by means of three sequential rotations.  
 
 



 

15 
 

 
a) rotation about axis z -angle ψ  
b) rotation about axis \x  -angle ϑ     
c) rotation about axis \\y  -angle ϕ  
 
 
 
 
 
 

 
 

 

 

 
 

 

 

 

 

 
 

 
 

Fig. 2.3 
 

The special case of modified Cardan’s angles for rotationally symmetric body will not be 
discussed. It can be said that those angles would be identical with modified Euler’s angles but 
axis of own rotation would be identical with body axis of symmetry .\\y≡η  Following 
Fig. 2.3  we can write the vector of resulting angle speed expressed in the coordinate system 

ζηξ ,,  connected with moving body in form 
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Inertia matrix has form (1.1). Especially for rotationally symmetrical body with axis of 
symmetry \\y≡η  this matrix has form  
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,
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where the meaning of presented symbols was explained in connection with relations  (2.6) and 
(2.7). Moment of momentum of symmetric body can be written as 
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Moment of inertia forces can be expressed according to relation (2.16), it means 

.\\\\\\ LΩLM ×−−= &
D  (2.20) 

Having substituted we can come to 
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In this case of rotationally symmetric body with axis of symmetry \\y≡η we can substitute 
0=ϕ  into (2.21). Then all inertia effects are expressed in „two comma coordinate system 

“depicted in Fig. 2.3. It corresponds to the introduction of modified Cardan’s angles.  

 

The examples on spherical motion 
 
Example 2.1 
 
Rolling of bevel pinion 3 on fixed taper disk (Fig. 2.4) is forced by means of driver 2 rotation 
about vertical axis 21o  by constant angle speed 21ω . Determine kinetic energy and inertia 
effects acting on truncated taper of mass m. Top angle of the bevel pinion is β . 
 
Inputs: .,,,,, 21 konstIIrm oS =ωβ  
 
Recommendation: Use the relation 
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oo

D

I
III
IIII

LΩLM  
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Solution: 
 
Element of a ruled surface which is contact surface straight line of driving tapers is in fact 
instantaneous axis of resulting rotation, because each of its point has zeros momentary speed. 
Respecting the fact that angle speed 21ωψ =&  we can determine the secondary angle speed 

.2132 βωωϕ tg==&  (2.22) 

Because .90 konst=°=ϑ , .32 konst== ωϕ&  a .konst=ψ& , the moment of inertia forces has 
form 

.
0
0

sin















−
=

ϑψϕ &&o

D

I
M  (2.23) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.4 
 

This expression is called by gyroscopic moment which can be also expressed by means of 
vector relation (moment of inertia forces in this case does not contain any other terms) 

.ψMM && ×== ϕoGD I  (2.24) 

The centrifugal force can be expressed in scalar or vector form, respectively (coordinates are 
related to „two comma” system) 

















−
==

2
21

2
21 0

0
      resp.,

ω
ω

S

nSn

mr
mrD D . (2.25) 
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Example 2.2  [4] 
 

Let us solve the forceless gyroscope motion Fig. 2.5. It means that gyroscope is not affected 
by any external forces and its gravity force is in balance with support reaction. This support is 
placed in a gyroscope centre of gravity. The initial angular speed ( 0=t ) of gyroscope is 

( ) .0 0ωω =  

Following the low of moment of momentum change in differential form ( ML =& ) we can say 
that .konst=⇒= L0L&  It means that moment of momentum vector has constant direction 
and magnitude. Both of these are unknown. Let us introduce the coordinate system 

ζηξ ,, such as the ζ axis would be identical with axis of rotary symmetry of the gyroscope. 
The η axis lies in σ plane which is defined by ζ axis and vector ω and simultaneously be 
perpendicular to the ζ axis. The ξ axis is perpendicular to the both axes and simultaneously 
the whole coordinate system is right-handed.  

 
 

 
 

 
 

 
 

 

 

 

 

Fig. 2.5 
 

As a start point of solution we can decompose angular speed vector ω into two components in 
the ζ  and  L directions, respctively. Let us remind that this decomposition is imaginary only 
because we do not know a precession axis (axis of L). Therefore it has to be proved that L 
vector lies in σ plane too. We express the inertia matrix and angular speed vector in ζηξ ,,  
coordinate system having form   

.
0

,
,0,0

0,,0
0,0,

\\
















=
















==

ζ

ηξηζξηζ

ω
ωωJJ

oI
I

I

 (2.26) 
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Moment of momentum vector we can write down acording to the well known relation 

,
0

\\\\
















==

ζ

ηξηζ

ω
ω

oI
IωJL  (2.27) 

which shows that the moment of momentum component in the ξ direction is zero and for this 
reason this vector lies in ηζ plane. Now let us remind the (2.14) relation in form  

( )
.

cos
sin\\\\

















+
==

ϑψϕ
ϑψ

ϑ

ξηζ

&&

&

&

oI
I

I
ωJL  

Comparing both last relations we can write 

.0 0 constIL ==⇒== ϑϑϑξ
&  (2.28) 

From Fig. 2.5 and (2.14) follows 

.sinsin 00 ψϑϑψη && ILLIL =⇒==  (2.29) 

Comparing (2.14) and (2.17) and respecting (2.28) we can come to relations  

.cos,sin 00 ϑψϕωϑψω ζη &&& +==  (2.30) 

Because ..\\ constLconst =⇒=L , where L is magnitude of the vector of moment of 
momentum \\L , and for this reason we can write 

.0ψψ && ==
I
L   (2.31) 

 
Comparing ζ components of vector \\L  expressed by means of relations (2.27) and (2.14) we 
can come to 

( )00 coscos ϑψϕϑζ && +== oILL . (2.32) 

Respecting (2.31) the last equation can be solved for ϕ&  which takes a form 

00
0

0000000
0 cos1coscoscoscos ϑψϑψϑψϑψϑϕϕ &

&&&
&& 








−=

−
=

−
==

I
I

I
II

I
IL

o

o

o

o . (2.33) 

It follows from the last relation that the bracket will decide about the mutual sense of own 
rotation 0ϕ&  and precession 0ψ& . If the bracket sign will be negative IIo >  than the own 
rotation sign will be different from the precession sign. In this case we can speak about the 
forward precession (assuming that ( )°∈ 90,00ϑ ). In the opposite case the precession is 
backward.   

Sumarizing this knowledge we can come to .,, 000 ϕϕψψϑϑ &&&& ===  Because γ  is known 
angle (position of ζ  and ω is known), we can from (2.30) and γ  express angle 0ϑ . The rate 
of the components ζω  and ηω  is defined by known angle γ  and this rate is function of the 
wanted angle 0ϑ . Substituting (2.33) for 0ϕ&  we can write 
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.
cos

sin
00

000

00 γϑϑ
ϑψϕ

ϑψ
ω
ω

γ
ζ

η tg
I
Itgtg

I
Itg

o

o =⇒=
+

==
&&

&
 (2.34) 

As follows from the late relation the angle γ  remains constant too. The angle 0ϑ  can be 
determined from the last relation. From the low of sines and from Fig. 2.6 we can compute 0ψ&  
according to the relation 

 
 

 
 

 
 

 
 

 
 

Fig. 2.6 
 

( ) .
sin
sinsinsin

0
00

00

0

ϑ
γωψ

ψ
γ

ω
ϑπ

=⇒=
−

&
&

      (2.35) 

Respecting  

0
2

0
0

1
sin

ϑ

ϑϑ
tg

tg

+
=  (2.36) 

we can rewtite (2.35) into form 

.sincos
sin
sin 22

2

2

0
0

00 γγω
ϑ
γωψ +==

I
Io&  (2.37) 

After substitution (2.34) into (2.33) for ϕ&  we have  

.1cos1sin1sincos1
sin
sin

0
0

0
00

00
00

00 





 −=








−=








−=








−==

I
I

I
I

tg
I
II

I
tgI

I o

o

γω
γ

γω
ϑ
γωϑ

ϑ
γωϕϕ &&

 (2.38) 
Taking  into account the initial conditions ( ) ( ) ( ) ,00,0,00 0 === ψϑϑϕ the time dependence 
of the individual angles can be expressed as   

( ) ( ) .1cos,sincos 0
22

2

2

0 





 −=+=

I
Itt

I
Itt oo γωϕγγωψ  (2.39) 
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It is clear from the last relations that the forceless gyroscope is able to move by  constant own 
rotation and precession keeping constant nutation angle.  

 

Example 2.3 
Determine the inertia effects acting on cannon barrel having mass m and length l doing 
simultaneously primary precession corresponding to the azimuth angle ψ  and nutation 
described by the elevation angle ϑ . The barrel is considered as a slender prismatic bar. Use 
the Cardan’s angles for computation. 

The model of cannon barrel and its description by means of Cardan’s angles is depicted in 
Fig. 2.7. The angle speed of own rotation situated on the η axis is zero ( 0=ϕ& ) and the 
corresponding rotating angle is considered also equal to zero. It means that .0=ϕ  Let us 
substitute 0,0 == ϕϕ &  into (2.21) and than the moment of inertia forces can be written as  

( )
( )

( )
.

cossin2
cossin

cossin2

















−−
+−

−−
=

ϑψϑϑψ
ϑϑψϑψ

ϑϑϑψ

&&&&

&&&&

&&&

III
I

III

o

o

o

DM  (2.40) 

To obtain a result inertia force it necessary to determine a centre of gravity acceleration. If the 
bar is prismatic and homogeneous the centre of gravity lies in half of length. Because the bar 
performs forward rotations about concurrent axes we can add up the angle speeds in the 
vector way. It is shown in Fig. 2.7 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

Fig. 2.7 
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Fig. 2.8 

 

According to the Pythagoras‘s low we can write  

.2222 ϑψε drdrrd +=  (2.41) 

Having whole equation devided by rdt we can come to 

22
22

ϑψϑψε &&& +=





+






=

dt
d

dt
d  . (2.42) 

It follows from the last relation that the resuling angle speed can be obtained as a vector 
product of individual angle speeds. Acceleration conditions will be a little bit more 
complicated. To keep generality of the example we will consider nonzero angle accelerations   
ψ&&   a ϑ&& . For sake of simplicity let us mark .2/lr =  

 
 

 

 

 
 

 
 

 
 

 
Fig. 2.9 
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Marking the radius-vector of center gravity by Sr , we can write according Fig. 2.9  

,
cos

sincoscossin
coscossinsin

,
sin

coscos
sincos
















−−

−
==















−
=

ϑϑ
ψϑψψϑϑ

ψϑψψϑϑ

ϑ
ψϑ
ψϑ

&

&&

&&

&

r
rr

rr

r
r
r

SSS rvr  (2.43) 

.
sincos

coscossincossinsin2coscoscossin
sincoscoscoscossin2sincossinsin

2

22

22

















−
−−+−−

+−++
=

ϑϑϑϑ
ψϑψψϑψψϑψϑψϑϑψϑϑ

ψϑψψϑψψϑψϑψϑϑψϑϑ

&&&

&&&&&&&&

&&&&&&&&

rr
rrrrr

rrrrr

Sa

 (2.44) 
This result can be obtained also in another way by the decomposition of resulting spherical 
motion to the primary precession 21 represented by angle ψ  and secondary nutation 32 
represented by angleϑ . Than following relations can be written down 

213231 += , 

ϑψϑ cos,, 2132213231 && rvrv ==+= vvv , 

caaaa ++= 213231 , (2.45) 

where  

kωvωaaaaaaa ψ&=×=+=+= 213221212121323232 ,2,, ctntn . (2.46) 

The individual quantities have magnitudes 

,sin2,,,cos,cos 32
2

3221
2

21 ϑϑψϑϑϑψϑψ &&&&&&&& rarararara crntn =====  (2.47) 

and directions depicted in Fig. 2.10 

 

 

 

 
 

 
 

 

 

 
 

 
 

Fig. 2.10 
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These quantities can be written down in the vector way 














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














−=

ϑϑ
ψϑϑ

ψϑϑ
ψϑψ
ψϑψ

ψϑψ
ψϑψ

sin
coscos

sincos
,

0
sincos
coscos

,
0

coscos
sincos

2

2

2

3221
2

2

21

&

&

&

&&

&&

&

&

r
r

r
r
r

r
r

ntn aaa , (2.48) 
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,
cos

cossin
sinsin
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

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


=










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ψϑϑ
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&&
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&&

&&

r
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r

ct aa  (2.49) 

The centre of gravity acceleration of the cannon barrel can be obtained as a vector summation 
of these five accelerations leading to (2.44). The resulting inertia force acting in the spherical 
motion centre will be equal to  

( )ctntnS mm aaaaaaD ++++−=−= 32322121 . (2.50) 

 
Note: 

The direction of Coriolis acceleration is given by the vector product 32212 vωa ×=c , where 
ψω &=21  and ϑ&rv =32 .   

 

 
 
 

 
 

 
 

 

 

 

 

 
Fig. 2.11 

 
It is convenient to remind that right hand fingers indicate direction of vector multiplication, it 
means from 21ω  to  32v  and thumb shows the direction of „result“(vector product).   
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Example 2.4 

As the next example let us present the rotating bar whose steady motion we solved in example 
1.2. Now we will look for the solution of the unsteady motion which corresponds to spherical 
motion. The Fig. 2.12 shows the bar 3 jointed via the rotating couplings with massless 
member 2 exposed to acting of constant moment 0M . From Fig. 2.12 follows that 

( ) ( ) 00,00 == ϕϕ & , it means tha bar rotation about its own axis is zero. Let us assemble the 
equations of motion for the numerical solution of motion.  

Input quantities:  ( ) ( ) ( ) ( ) .00  small),(0,00,00,,, 000 ==== ϑϑϑψψ &&MII  

The coordinate system will be chosen in such a way that the bar symmetry axis will be 
identical with the ζ axis. Further ξ axis we place in such a way that nutation (by means of 
nutation the precession axis swichs to the axis of own rotation) will lie on the ξ axis. The 
third axis η  should be completed to the right-handed coordinate system ζηξ ,, . The 
equations of motion will be two moment conditions to the axes   and ηξ . It can be written 
down in the vector form (Force conditions of dynamic equilibrium would serve to the 
computation of suspension reactions-they will be left out) 

.0MM =+ D  (2.51) 

After expanding we get 

( )

( ) .0cos2sinsin

,0cossinsin
2

0

2

=−++

=−++

ϑϑψϑψϑ

ϑϑψϑϑ

&&&&

&&&

o

o

IIIM

IIIlmg
 (2.52) 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 
 

Fig. 2.12 
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The equations (2.52) can be rewritten into form 

( ) ( ) ( ),,qqpqqM &&& =t  (2.53) 

where 

( ) ( )
( )

.
2sin

cossin)(sin
2,,,

sin0
0

0

2













−−−

−−−
=



=



=

ϑψϑ

ϑϑψϑ
ψ
ϑ

ϑ &&

&
&

o

o

IIM

IIlmg
I

I
qqpqqM  (2.54) 

 

This system of nonlinear differential equations can not be solved in the analytical way 
therefore only one way can be used for integration-numerical way. Employing standard 
procedure of MATLAB -ode23 or ode45 it is suitable to apply a certain arrangement. The 
presented procedures are convenient for solution of the matrix differential equation with 
initial condition  

( ) ( ) ( ) 00,, xxxfx == tt& . (2.55) 

To achieve the form (2.55) we add trivial identity  

( ) ( ) ( ) ( ) 0qqMqqM =− tt &&  (2.56) 

to the equation (2.53) and both equations can be written down in compact matrix form 

( )
( )

( )
( ) ( )

( )
( )

( )
,

,




=









−











0
qqp

q
q

qM0
00

q
q

0qM
qM0 &

&&&

&

t
t

t
t

 (2.57) 

which can be further rewritten as 

( ) ( ) ( ) ( ) ( ).xcxxBxxA =− tt&  (2.58) 

The meaning of symbols ( ) ( ) ( )xcxBxA ,,  follows from foregoing two relations. All these 
quantities are function of the state vector 

( )
( )
( )

.



=

t
t

t
q
q

x
&

 (2.59) 

The equation (2.58) can be converted into form (2.55) by pre-multiplying ( )qA 1−  and than we 
can come to  

( ) ( ) ( ) ( ) ( )[ ]
( )

( ) 0

,

1 0, xxxcxxBxAx
xf

=+= −

4444 34444 21
&

t

tt . (2.60) 

Substituting concrete values 

NmMIImlImlkgm o 10,01.0,20/,
3

,5.0,1 00

2

====== ϑ  

we can get results depicted in Figs. 2.13-2.16. The generalized displacements ( ) ( )tt ψϑ  and  
are primarily represented and the generalized velocities ( ) ( )tt ψϑ &&  and  follow them.   



 

27 
 

Fig. 2.13 
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Fig. 2.14 
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Fig. 2.15 

 

Fig. 2.16 
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Because the rotating bar is not braked and the environment resistance is neglected it is 
apparent that the limit value of nutation angle ϑ  must be 5708.12/ =π  which corresponds to 
the Fig. 2.13. Also the nutation speed ϑ&  with steadying of angle ϑ  is approaching to zero 
which corresponds to the Fig. 2.15 
 

Example 2.5 
Grinding pipe welds the abrasive wheel is doing spherical motion, see Fig. 2.17.  Angular 
speed of specific rotation 0ω  corresponds to revolutions of the hand grinding machine 

RPMn 7000= . The precession angular speed is defined by the abrasive wheel center speed 
along the pipe perimeter smv /2.00 = . The nutation angle is permanently 90° so that nutation 
angular speed and acceleration are equal to zero. Let us determine the inertial effects acting 
on the abrasive wheel and on the hand of workman which operates with grinding machine.  
The pipe diameter is .75.02 mRD ==  

 
Solution 

Let us introduce the coordinate system according to the Fig. 2.17. The precession angle speed 
can be determinated as follows 

.0.53332 00 rad/s
D
v

R
v

===ψ&  (2.61) 

As the next step we obtain the specific rotation angle speed of the wheel 

./733.0383
300 sradn

===
πωϕ&  (2.62) 

 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

Fig. 2.17 
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We can neglect resultant inertia force acting on the wheel because the velocity 0v  is small and 
constant. For this reason the centrifugal force will be zero. From all components of moment of 
inertia forces only gyroscopic moment will be non-zero and takes a form 

. 0.09770 NmIM oG == ψω &  (2.63) 

 

Example 2.6 
Let us solve the motion of heavy gyroscope by means of 

a) Euler’s modified angles 
b) Cardan’s angles 

Let us suppose that the specific rotation speed of the gyroscope ϕ&  is constant and much more 
larger then angle speeds of precession and nutation ϑψωϕ &&& ,0 >>= . Further we will suppose 
that change of nutation angle is small, so that the nutation angle cen be expressed as sum of 
constant and small perturbation 

00 sinsin,1, ϑϑϑϑϑϑ =<<∆∆+= & . (2.64) 

a) The Fig. 2.18 shows heavy gyroscope whose position is described by modified Euler’s 
angles 

Corresponding initial condition are: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .00,000,
2

30,0,00,00,00,0 00 =∆=∆======== ϑϑϑπϑϑωϕϕψψ &&&&t

 (2.65) 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
Fig. 2.18 
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Moment conditions of equilibrium to \\x and  \\y  axes briefly marked by ηξ  and , 
respectively, can be written as 

.0

,0

=

=−

η

ξ

D

SD

M
mgrM

 (2.66) 

Moment equilibrium condition to the ζ  axis was omited, because there holds a kinematic 
condition  .0 const== ωϕ&  Respecting (2.16) and 00 ,1sinsin ωϕϑϑ =−== &  we can write 
down these conditions (2.66) in form 

.0

,

0

0

=∆+

−=−∆

ϑωψ

ψωϑ
&&&

&&&

o

So

II

mgrII
 (2.67) 

b) The same gyroscope is depicted in Fig. 2.19 whose position is described by means 
Cardan’s angles. 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

Fig. 2.19 
 

Corresponding initial conditions are: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .00,000,00,0,00,00,00,0 00 =∆=∆======== ϑϑϑϑϑωϕϕψψ &&&&t
 (2.68) 
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For the sake of simplicity let us mark \\\\\\ ,, zyx ≡≡≡ ζηξ . Than the moment equilibrium 
condition to the axes ζξ  and  has form  

.0

,0

=

=−

ζ

ξ

D

SD

M
mgrM

 (2.69) 

Substituting moment of inertia forces (2.21) and respecting rotatory symmetry ( 0=ϕ ) we can 
come to  

.0

,

0

0

=∆+

−=−∆

ϑωψ

ψωϑ
&&&

&&&

o

So

II

mgrII
 (2.70) 

Comparing both equations with (2.67) we can see that the results are identical. For solution 
we use the method of Laplace transformation. Let us mark firstly Laplace transform 

{ } { }ψϑ LL =∆= PT ,  (2.71) 

and apply it to the system (2.70). Then we can write   

.0

,1

0
2

0
2

=−

−=+

pTIPIp
p

mgrpPITIp

o

So

ω

ω
 (2.72) 

The expression p/1  on the right hand side of the first equation corresponds to Laplace 
transform of unit step. It means that the moment started acting in time .0=t Solution of the 
system (2.72) takes a form 

( )

( ).1

,

2222
0

22

Ω+
−

=

Ω+
−

=

ppI
mgrIP

pIp
mgrT

So

S

ω
 (2.73) 

In relation (2.73) we have used 

.2
02

2
2 ω

I
Io=Ω  (2.74) 

Solution of the original system of equation (2.70) can be obtained by the inverse Laplace 
transform of (2.73) in form 

( )

.sin1

,cos1

0

2




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 Ω

Ω
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 (2.75) 
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Example 2.7 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 

Fig. 2.20 

 
The face look to the gyroscopic stabilizer is depicted in Fig. 2.20. It found an appllication in 
shipping traffic and was as curriosity used in railway traffic too. (The one rail train on the 
World exposition in Ósaca). Let us explain this stabilizing phenomenon. 

 
Solution 

The gyroscope angular speed is very high (tens of tausends RPM) represented by specific 
rotation speed 0ωϕ =& , which is considered as constant. Let us imagine the configuration in 
Fig. 2.20 which is marked by red color. The coach tilts to the right hand side which 
corresponds to the primary clockwise precession ψ& . The gyroscopic moment 1GM can be 
determinated from the vector product ψ&& ×ϕ and it causes turning ϑ of the inner frame by 
angle speed ϑ& (all is marked by red color). The gyroscopic moment 2GM  will be obtained 
from the vector product ϑϕ && ×  ( 21 and GG MM are labeled in (2.16)). This moment acts against 
the angle speed ψ& direction and keeps coach from falling to the side. The oposite situation is 
marked  by blue color. 
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3. General spatial and screw body motion 
For investigation of spatial and screw body motion (screw motion is a special case of general 
spatial motion) we use a basic decomposition of the spatial motion into primary advance 
motion and secondary spherical motion. The result inertia effects can be then determinated as 
vector sum of inertia effects from these individual motions. (Because system is linear the 
principle of superposition can be used). Both of these individual motions and the 
corresponding inertia effects were discussed we can pass directly to the examples.    
 
Examples on general spatial and screw body motion 
 
Example 3.1 
  

 
 

Fig. 3.1 
 

 
The scheme of the screw (spindle) press doing screw motion from the start of piece pressing 

( )( )00,0 == qt  is depicted in Fig. 3.1. For tha sake of simlicity we will suppose that piece 
material if perfectly elastic having total stiffness k. Our problem is to solve the press motion 
after  achievment of contact with piece until maximal piece compression. Let us suppose that 
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the spindle is not driven and it moves due only to own inertia. Displacement will be denoted 
from the place of first contact it means ( ) 00 =q and the initial velocity is defined by angular 
speed ( ) ( ) .00 0ωϕω == &  Respecting fact that  the number of body degree motion is 1 its 
position is uniquely described by coordinate q. This motion consists of the primary motion in 
the axis x direction and secondary rotation about the same axis. The secondary rotation is 
coupled with the primary sliding motion due to the screw lead. The screw perimeter projected 
into cylinder surface is depicted in Fig. 3.2   
 

 
 

Fig. 3.2 
 
From the triangle similarity we can determine the screw rotation dependence on the axial 
displacement q following relation  

,2
s
qπϕ =  (3.1) 

where s is screw lead.  Similar relations hold even for time derivatives.  

.2,2
s
q

s
q &&

&&
&

& πϕαπϕω ====  (3.2) 

From the first relation (3.2) we can get the second initial (speed) condition 

π
ω

π
ϕ

22
00

0 ssq ==
&

& . (3.3) 

Having assigned the lead angle it is possible to express this relation in form 

.00 βϕ tgrq && =  

In case of rotary symmetrical body the result inertia force from primary motion will take a 
form   

.qmmaD &&==  (3.4) 

The result moment from elementary normal and friction forces in thread can be written in 
form 

( )∫ ∫ −=−=−= ββββββ sincossincossincos fNrNrNfrrdNrdTM , (3.5) 

the result force from these mentioned elementary forces in thread can be written in form 
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( )ββββββ sincossincossincos fNdNfdNdTdNR +=+=+= ∫ ∫∫ ∫ . (3.6) 

Expressing N from (3.6) 
 

ββ sincos f
RN

+
=  (3.7) 

 
and substituting into (3.5) we can obtain dependence of acting force moment in thread on the 
result  reaction in form 

( ) ( ) ( ) ,
tg~tg1
tg~tg

sin~tgcos
sincos~tg

sincos
sincos

βϕ
βϕ

βϕβ
ββϕ

ββ
ββ

+
−

=
+

−
=

+
−

=
RrRr

f
fRrM  (3.8) 

where ϕ~  is friction angle satisfying condotion ϕ~tg=f . Using well known trigonometric  
formula  

( )
βα
βαβα

tgtg1
tgtgtg

+
−

=−  (3.9) 

we can rearrange the relation (3.8) into form 

( ).~tg ϕβ −−= RrM  (3.10) 

The equations of motion describing screw press movement are represented by the force 
component condition in the axis direction and moment equilibrium condition about this axis. 
Both equations have form    

,0=−++ mgkqqmR &&  (3.11) 

.0=+ ϕ&&IM  (3.12) 

Let us substitute (3.10) into (3.12) and exclude R from equation (3.11). Then substituting R 
into (3.12) we can rewrite this equation and have  

( ) ( ) .0~tg =+−−−− ϕϕβ &&&& Irkqqmmg  (3.13) 

Angular acceleration ϕ&&  can be obtained by the second derivative of the relation (3.1). Then 
the equation (3.13) can be rewritten as (after canceling out r) 

( ) ( ) ( ) ( ) ( ).~tg~tg2~tg ϕβϕβπϕβ −=−+



 +− mgtqktq

sr
Im &&  (3.14) 

For the sake of notation simlicity let us mark 

( ) ( ) ( )ϕβϕβπϕβ ~tg,~tg,2~tg −=−=+−= mgfkk
sr

Imm redredred  (3.15) 

and let us rewrite the equation (3.14) into form 

( ) ( ) .redredred ftqktqm =+&&  (3.16) 

Dividing by redm  the last equation takes form 

( ) ( ) .2

red

red

m
f

tqtq =Ω+&&  (3.16a) 



 

37 
 

This equation describes vibration of the harmonic oscilator loaded by constant force .redf   

Solving maximal compression of the piece we can express acceleration from the equation 
(3.16)  

( ) ,1 2
0 qaqkf

m
qa redred

red

Ω−=−== &&  (3.17) 

where  ( )

( )

( )

( )
.2~tg

~tg,2~tg

~tg 2
0

sr
Im

k
m
k

sr
Im

mg
m
fa

red

red

red

red

πϕβ

ϕβ
πϕβ

ϕβ

+−

−
==Ω

+−

−
==  (3.18) 

This acceleration is dependent on the displacement. For the stop place detection of the press 
0,max == qqq &  we can use the basic kinematic expression for acceleration (v is press velocity 

in the axial direction)   

( ) .
2

2
0

2

qa
dq
vdqa Ω−=== &&  (3.19) 

Separation of variables can be performed in such a way that we multiply the equation (3.19) 
by dq and integrate  

( ) ( ).2
0

22
0

2

2
0

∫ ∫=Ω−
q v

v

vddqqa  (3.20) 

The relation between velocity and displacement follows from the last equation as 

.2 2
0

222
0 vvqqa −=Ω−  (3.21) 

For 0== qv &  (3.21) represents the quadratic equation for maxq  having form 

.02 2
0max0

2
max

2 =−−Ω vqaq  (3.22) 

Its positive root is  

.2

2
0

22
00

max Ω
Ω++

=
vaaq  (3.23) 

The initial velocity ( )00 qv &=  was determinated from (3.3). The maximal compression 
determination is complete.  The axial motion time dependence solution of the press means to 
find a solution of the differential equation of the second order (3.16a) which consists of the 
homogeneous solution (solution of (3.16) with zero right hand side) 

( ) tBtAtqH Ω+Ω= sincos   (3.24) 

and particular solution which can be estimated according to the right hand side. It means in 
the form of constant 

.CqP =  (3.25) 

This constant can be obtained by the substitution (3.25) into the equation with non-zero right 
hand side (3.16a) 

.2
2

red

red

red

red

red

red

k
f

m
fC

m
fC =

Ω
=⇒=Ω  (3.26) 
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The total solution then can be written as 

( ) ( ) ( ) .sincos
red

red
PH k

ftBtAtqtqtq +Ω+Ω=+=  (3.27) 

Constants of integration A and B follow from initial conditions substituted into (3.27). For this 
reason let us derivate the equation (3.27) with respect to time and come to the relation for 
velocity  

( ) .cossin tBtAtq ΩΩ+ΩΩ−=&  (3.28) 

For time 0=t the equations (3.27) and (3.28) take form 

( ) ,00 0
red

red

red

red

k
fA

k
fAqq −=⇒+===  (3.29) 

( ) .0 0
0 Ω

=⇒Ω==
qBBqq
&

&&  (3.30) 

Respecting (3.29) and (3.30) we can arrive at the solution (3.27) in form 

( ) ( ) .sincos1 0 tqt
k
ftq

red

red Ω
Ω

+Ω−=
&

 (3.31) 

To express the solution in dependence on input parameters we take into account relations 
(3.3) and (3.15) 

( ) ( ) ,sin
2

cos1 0 tst
k

mgtq Ω
Ω

+Ω−=
π
ω  (3.32) 

where 

( )

( )
sr

Im

k
m
k

red

red

πϕβ

ϕβ
2~tg

~tg

+−

−
==Ω  (3.33) 

is eigenfrequency of the system vibration. Taking into account non-linearity of friction forces 
in thread we have to respect solution (3.31) only in the span ( ) max,0 qtq ∈  where maximal 
displacement maxq  is defined by (3.23).  

 
Example 3.2 

 

A jetplane flyes through the curve having radius R by velocity 0v . A plane turbine has a 
constant angular speed 0ω , mass m and axial moment of inertia oI . Further the geometrical 
parameters of the turbine placement b and c are entered. The turbine mounting is depicted in 
Fig. 3.3. Our problem is to find out the reaction forces in turbine supports. Broadly speaking 
this problem is kinematic-static because all kinematic quantities are defined and goal of 
computation is determination of required forces.    
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To obtain a solution let us perform a basic decomposition of the motion with reference point  
in centre of gravity of the turbine. Let us imagine that the turbine moves by sliding motion 
having constant velocity of gravity centre 0v along circle of radius R it means without any 
rotation. For this reason the tangential acceleration is zero (mass point motion along then 
circle of radius R). Remaining acceleration corresponds to normal acceleration of the gravity 
centre taking value      

., 02
2
0 






 ===

R
vR

R
van ψψ &&   (3.34) 

Corresponding inertia force can be expressed as 

,
2
02

R
vmmRD == ψ&  (3.35) 

which is marked by blue colour in Fig. 3.3. Now we can compose the primary sliding motion 
and the secondary spherical motion. Respecting fact that the secondary spherical motion 
centre is identical with gravity centre of turbine the tangential and normal inertia force 
corresponding to spherical motion will be equal to zero. Spherical motion is defined by 
primary precession velocity    

,0

R
v

=ψ&  (3.36) 

whose vector has direction from the picture plane (right hand rule). The secondary rotation 
corresponds to the angular speed of turbine  

.0 konst== ωϕ& , (3.37) 

whose direction follows from the picture. Nutation angle ϑ lies between the specific rotation 
vector and precession vector it means 90°. As the final step we can determine a moment of 
inertia forces. This moment was developed in Chap. 2 by relation (2.16). All components of 
this moment are zero except for gyroscopic moment taking form 

.0
00 R

vIIMIM ooGo ωψωψϕ ==⇒×= &&&  (3.38) 

Gyroscopic moment direction is depicted by red arrow in Fig. 3.3 
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Fig. 3.3 

 

The vectors directed to and from picture plane were marked by cross and dot in circle, 
respectively. This marking is being used commonly in electrical engineering. Because the 
body has 6 degrees of freedom (DOF) in space we can write 6 equilibrium conditions of 
dynamic balance. Really, the number of conditions will be 5. One condition is prescribed 
kinematic quantity .0 konst== ωϕ&  Remaining 5 conditions have form (moment equilibrium 
conditions are related to the axes going through the gravity centre of turbine).     

.0
,0

,0
,0

,0

=+−
=−

=−+
=−+

=

Gyy

xx

yy

xx

z

McBbA
cBbA

mgBA
DBA

B

 (3.39) 

Substituting for D and GM from (3.35) and (3.38) into (3.39) we can come to 5 algebraic 
equations for 5 unknown values of coupling forces in turbine bearings zyxyx BBBAA ,,,, . 
The task solution is complete.  

 
Example 3.3 

The next problem is again so called kinematic-static task where all of kinematic quantities are 
defined. The goal of our efforts is determination of inertia effects. The gyroscope doing two 
simultaneous rotations about two skew axes ζ and z  is depicted in Fig. 3.4. The 
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corresponding angular speeds 00  and ωΩ are constant. The angle δ between ζ axis and its top 
view projection (Fig. 3.4) is constant too.  

 

 
Fig. 3.4 

 
The result is general spatial motion. The inertia effect investigation can be performed by 
means of basic decomposition, it means the decomposition into the primary sliding motion by 
velocity and acceleration of the reference point A and secondary spherical rotation about this 
point.  This spherical rotation can be expressed by primary precession 0Ω transferred into the 
z axis and secondary specific rotation 0ω about the ζ axis. The ζ axis is identical with the 
specific rotation axis. The ξ  is defined in such a way that the z axis turning slightly about the 
ξ axis comes to the ζ axis and the last η axis can be completed to the right-handed coordinate 
system ζηξ ,, . As follows from the Fig. 3.4 the nutation angle ϑ  is constant complement of 
the δ angle to 90°.    

a) the primary motion is sliding 

Let us imagine that the gyroscope is doing primary sliding motion by velocity and 
acceleration of reference point A. Because 0Ω is constant the A point has only normal non-
zero acceleration  

.0,2
0 =Ω= tAnA aRa  (3.40) 

Corresponding inertia force takes a form  

,2
0Ω= mRDnU  (3.41) 

whose orientation and operation point are depicted in Fig. 3.4. Let us remind that the 
operation point of result inertia force of the body doing sliding motion is identical with body 
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centre of gravity. Respecting (3.40) the tangetial force corresponding to the primary sliding 
motion is zero.  

 

b) the secondary spherical motion superimposed to the primary sliding motion. It means that 
primary precession 0Ω=ψ& is transferred from the z to the z axis. The inertia force 
corresponding to the primary precession is acting in the spherical motion centre A and has a 
direction of normal inertia force from the rotation motion about z axis having angular 
speed 0Ω . It means perpendicular to z axis going through the gyroscope centre of gravity. Its 
magnitude is proportional to the perpendicular distance of the gyroscope gravity centre from 
z axis r and it can be expressed in form 

.2
0Ω= mrDnS  (3.42) 

Tangential inertia force caused by primary precession is in result of constant angular speed 
0Ω equal to zero. The moment of inertia force corresponding to secondary spherical rotation 

remains to be determined. Following (3.38) only one componernt is non-zero while the other 
components are zero. It means that   

{ ( ) ,0,cossinsin
sincos

2
01

cos
0 ==Ω−−−= ζη

δδδ
ξ ϑϑϑω DDooD MMIIIM 43421  (3.43) 

where 1I is gyroscope moment of inertia with respect to axes . and ηξ  The first term in the 
first relation (3.43) represents again gyroscopic moment which can be expressed as 

.cossin 000000 δωϑω Ω=Ω=⇒×=×= ooGooG IIMII ΩωψM &&ϕ  (3.44) 

It means that all inertia effects depicted in Fig. 3.4 are explained.   
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4. Basics of analytical mechanics 
4.1. Classification of mechanical systems   
 
The term „generalized coordinates“ will in this textbook present the coordinates defining 
positions of body or body system regardless these coordinates are longitudinal or angular and 
regardless connection of their number with DOF number n. The number of DOF expresses 
number of body or body system independent motions. The system description can be divided 
into two groups:   
 
a) The system position is described by nm >  of generalized coordinates. Then nmr −=  
coupling conditions (briefly couplings) have to be provided. As an example we can present 
body depicted in Fig. 4.1 
 

 
Fig. 4.1 

 
Its position is described by four generalized coordinates BBAA yxyx ,,, . It is well known that 
the body has 3=n  DOF. For this reason these coordianates have to be coupled by the 
condition of constant distance  

( ) ( ) .222 lyyxx ABAB =−+−  (4.1) 

It means that .1 and  3,4 =−=== nmrnm  In opposite case without coupling condition the 
distance A and B would not be constant.  
 
b) The system position is described by n generalized coordinates number of which correspond 
to number of DOF (driving coordinates).  

 
Fig. 4.2 
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As a suitable example can be presented the body depicted in Fig. 4.2 whose position is 
unambiguously described by three driving generalized coordinates .  and, ϕAA yx  In this case  

3== nm  and number of coupling condition is .0=−= nmr  
 
According to the number of DOF we can divide systems into two groups 
a) continuous (continuum) having ∞→n DOF number and 
b) discrete having ∞<n  DOF number 
 
For the next classification let us present three kinds of systems whose position will be 
described by redundant number of DOF nm >  and by corresponding coupling conditions.  
 
1) The mechanism with harmonic cam. The attribute „harmonic“ follows from the coupling 
condition. 
 

 
Fig. 4.3 

 
Its position is described by generalized coordinates    and  yϕ but the number of DOF is equal 
to 1 as can be proved. Therefore there is a coupling equation between those coordinates. This 
equation can be expressed both in integral and differential form, respectively. Integral and 
differential forms have form   

ϕϕϕ deydrey cos    resp.     ,sin =+= . (4.2) 

Let us notice that coupling conditions do not contain explicitly time in nor integral neither 
differential form.  
2) As the next example let us show the system depicted in Fig. 4.4. It is a pendulum with 
varying length of suspension. The system has 2=n   DOF which can be expressed by 
coordinates ( ) a  tr  ( )tϕ . When the motion ( )tr  is prescribed the excitation will be kinematic. 
When the system position is described by 3=m coordinates ( ) yxtr ,, , see Fig. 4.4, it is 
necessary to add still one condition ( 123 =−=−= nmr ), which means that the fiber is 
perfectly rigid and has constant length 0l  

( )[ ] .02
0

22 =−−−+ btrlyx  (4.3) 
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The coupling condition(4.3) is in integral form.  Its differential form can be written as 

( )[ ] ( )
( )

.00 =−−−+ 321
&

trd

dttrbtrldyydxx  (4.4) 

When the coordinate ( )tr  has prescribed shape eg. in form  ( ) trtr ωsin0= , then equation 
(4.4) takes form  

[ ] .0cossin 000 =−−++ dttrbtrldyydxx ωωω  (4.5) 

Let us notice that both forms (4.4) and (4.5) contain explicitly time. 

 
   

Fig. 4.4 
 

3) The third example of system is point moving along the „dog curve“ see Fig. 4.5 whose 
tangent is directed in each time instant into the point B. This point moves along the straight 
line 0lx =  by prescribed motion. The name „dog’s curve“ corresponds to behaviour of the 
dog watching a biker going on the road. Point has 2 DOF in a plane but its trajectory is 
described by 3 coordinates ( )trdydx ,,  (two of them are given by increments). The coupling 
condition follows from homothety of triangles 

( ) ( ) ( )[ ] .00
0

=−−−⇒
−
−

= dxytrdyxl
xl
ytr

dx
dy  (4.6) 

As follows from coupling condition (4.6) it condition can not be written down in the integral 
form because the exprssion on the left hand side does not represent total differential and for 
this reason the left hand side can not be integrated.   
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Fig. 4.5 

 
 
Partial conclusion: All coupling equations (couplings) written down in differential form can 
be expressed in so called Pfaff’s form (for one coupling equation) 

∑
=

=+
m

i
ii dtadxa

1
0 ,0   (4.7) 

where m is again number of generalized coordinates determining system position. Generally, 
the system can contain ( )mrnmr <−=  coupling equations expressed in Pfaff’s form  

,,...,2,1,0
1

0 rjdtadxa
m

i
jiij ==+∑

=

 (4.8) 

which can be written down in matrix form 

( ) ( ) .0,, 0 =+ dttdtT xaxxA  (4.9) 

As one can see in (4.9) the coefficients staying at coordinate and time differentials are 
functions of corresponding coordinates and time 

( ) ( ) .,,,,, 1,
0

,1,2

1

1,2

1

rmjTm

m

m

m
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dx

dx
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






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







=∈



















=
MM

 (4.10) 

Now we can come to the declared classification of the mechanical discrete systems.   
a) When the couplings are integrable the equation (4.9) can be rewritten into form  

( ) 0xf =t, . (4.11) 

Then the couplings and whole system is said to be holonomic. Turning back to the three 
presented systems we can classify the systems 1) and 2) as holonomic. Its couplings can be 
expressed in integral and differential form, respectively. From the other side the system 3) 
(„dog’s curve“) is non-holonomic because the coupling condition exists only in differential 
form.  
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b) The next criterion of classification is stationarity. If the couplings do not include explicitly 
time, it means that  

0a =0 , (4.12) 

in (4.9), the couplings and whole system is said to be stationary (time independent). 
According to this criterion the system 1) is stationary but the next other two systems are 
reonomic (non-stationary, time dependent). 
Let us suposse for this moment that the investigated system is stationary. Let us arrange the 
generalized coordinates in order of n independent and subsequently r dependent ones and let 
us subdivide the ( )tT ,xA matrix into corresponding blocks (sub-matrices) in form  

( ) ( ) ( )[ ] ( ) ( ) 1,1,,
2

,
121 ,,,,,,,,,,, r

z
n

n
rrTnrT

z

nTTT ttttt RxRxRxARxA
x
x

xxAxAxA ∈∈∈∈



== . 

The equation (4.9) now can be written down as  

( ) ( )[ ] ,,,, 21 0
x
x

xAxA =





z

nTT

d
d

tt  (4.13) 

and layed down by means of blocks  

( ) ( ) .,, 21 0xxAxxA =+ z
T

n
T dtdt  (4.14) 

Supossing that the ( )tT ,2 xA matrix is regular we can express the differential increments of 
dependent coordinates by means of independent coordinates in form 

( ) ( ) .,, 12 n
TT

z dttd xxAxAx −−=  (4.15) 

This relation will be used for development of Lagrange’s equations with couplings. 

 

4.2. Principle of virtual displacements (PVD) 
 
This principle is taken into account as axiom comming out from equilibrium conditions. Let 
us define so called virtual displacement. It can be seen as differential increment of some of m 
coordinates describing the system position. Supossing validity of m system equilibrium 
conditions  

∑ =
i

i ,0F  (4.16) 

we can write identity 

,0=⋅





∑ xF δ

i
i   (4.17) 

where xδ is arbitrary vector of dimension enabling to perform inner product of metioned 
vectors.  The last equation can be written down as 

.0=





=






 ∑∑

i
i

T
T

i
i FxxF δδ  (4.18) 

The vector xδ can be seen as a vector of differentially small displacements. Then the 
resulting inner product represents the work done by all generalized forces acting on the 
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systém. This work is zero as a result of equilibrium (static or dynamic). Let us remind that the 
system has n DOF, where .mn ≤ If nm >  it is necessary to supplement nmr −=  of 
coupling conditions. In case virtual displacements are mutually independent then 0, == rnm  
and the individual products forming inner product  (4.17), (4.18) are zero.  
 
PVD can be expressed verbally in this way: 
If the system is in equilibrium (dynamic or static), then the virtual work of all forces acting on 
the system is equal to zero.    
 
The vector xδ marking differential displacements corresponds to real differential 
displacements xd  for stationary systems. When the system is reonomic (non-stationary) the 
situation can be different. Fig. 4.6 shows real displacement idx  which is effected by time 
change of ( )tr  and do not correspond to the virtual displacement ixδ . For this reason we will 
award such virtual displacement change of the system to be this change not effected by time 
change. Such a change is called isochronic variation.   
 

 
 

Fig. 4.6 
 
Let us turn back our attention to the note „In case virtual displacements are mutually 
independent then 0, == rnm  and the individual products forming inner product  (4.17), 
(4.18) are zero“.  Then the relations staying at the individual virtual dispalcements in 
equation (4.18) have to be zero, it represents nm =  equations. These equations correspond to 
the static equilibrium conditions or equations of motion for static and dynamic problem, 
respectively. It can be realized in such a way that the system is gradually given by m 
individual virtual displacements (repeatedly one of the virtual dispalacements will be non-
zero while the other displacements will be equal to zero) and the resulting virtual work of 
those forces will be put equal to zero. The two examples when nm =  will be presented as an 
application to the PVD. Let us remind two rules for modelling: 
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1) In mechanics the body (point) position is marked by coordinate oriented from 
fixed point (polar radius in a case of rotation motion) to the moving point (polar 
radius)  

2) The time derivatives of position coordinate and its virtual change have the same 
direction like this coordinate.  

 
 
4.2.1 Application of PVD to the systems described by driving generalized coordinates (m=n)  
 
Example 4.1 
 
The mechanism with harmonical cam is depicted in Fig. 4.7.  Let us assemble its equation of 
motion. As a starting point we can determine DOF number according to the relation 

( ) ( ) ( ) .13010262133 =−++−=−++−−×= ovrpi   (4.19) 

When we deside for one system description coordinate, then .1== nm  For this reason we 
will write only one equation of motion.  As independent coordinate we can chose the cam 
rotation angle ϕ . The other coordinates and their time derivates including virtual changes 
have to be expressed by means of . and,, δϕϕϕϕ &&&  

 
 

Fig. 4.7 
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Note: 
 
The main advantage of analytical mechanics methods is fact that the result of its application 
is directly system of equations of motion. It is not necessary to assemble laboured equilibrium 
conditions containing also coupling forces. When the couplings are perfect then the coupling 
forces do not do work and the use of analytical mechanics methods is advantageous. In 
opossite case (real couplings with passive effects) this advantage disappears because 
expression of  passive effect work can be very difficult.    
 
Let the mentioned system is without passive effects. We fistly give the virtual displacement 
δϕ  to the system. Because of one coordinate decription dependent virtual displacements 

z  and  δδy appears. These ones can be computated by the differentiation of relations   

.cossin
,cossin

δϕϕδϕ
δϕϕδϕ

ezez
eyrey

=⇒=
=⇒+=

 (4.20) 

The time derivative can be obtained in the similar way  

.sincossin 2 ϕϕϕϕϕ &&&&& eeyrey −=⇒+=  (4.21) 

Then the virtual work of all forces acting on the system can be written down in form 

( ) ( ) .0233 =−++−− zgmyymgmFIM A δδδϕϕ &&&&  (4.22) 

Substituting (4.20) and (4.21) into (4.22) we can come to  

( ) [ ] .0coscossincos 2
2

333 =−−++−− ϕδϕϕδϕϕϕϕϕδϕϕ gemeememgmFIM A &&&&&  (4.23) 

The virtual change δϕ  is of the differential order but non-zero. For this reason the equation 
(4.23) can be canceled by δϕ  and written as 

[ ] ,0cossincos 2
2

333 =+−++−− ϕϕϕϕϕϕ egmememgmFIM A &&&&&  (4.24) 

which is the equation of motion of the whole mechanism. The equation of motion 
assembladge is always starting point for solution of dynamic problem. The question remains 
what is the goal of solution. If the goal of solution of the equation of motion is motion of 
mechanism (specific dynamics problem) e.g. running up it is necessary to solve the equation 
(4.24) with respect to ϕ . It is strongly non-linear differential equation whose analytical 
solution we can not find in most cases. Then only one possible way to solution is numerical 
one. The description of numerical methods for solution of the equation (4.24) extends range 
of this text book. The reader can be recommended to the reference [5]. The different situation 
occurs when the kinematic quantity ϕ  or its some time derivative e.g. ( ) 0ωϕ =t&  (kinematic-
static problem) is prescribed as a function of time. Then the equation (4.24) becomes the 
algebraic equation for force quantities e.g.  M (supposing thet F is prescribed function of ϕ  or 
t) for required kinematic function. 

 
Example 4.2 

The system with 2 DOF is depicted in Fig. 4.8. To simplify we will suppose that system 
motion takes place in horizontal plane and mass of the member 3 is neglected. If we decide 
for solution in space of driving generalized coordinates the result of PVD application will be  
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two equations of motion. As those coordinates will be chosen angles . and ψϕ  Then the 
coordinate y and its time derivatives together with virtual change have to be expressed by 
means of driving generalized coordinates. It should be sayd that this approach is appropriate 
esspecially in such cases when dependent coordinates are possible to express as a function of 
the independent driving generalized coordinates.   

 

 
Fig. 4.8 

 
It is realizable in this case by means of derivatives and differentiation of the relation 

.cos,sincossin 2
2

222 δϕϕδϕϕϕϕϕ ryrryry =−=⇒= &&&&&  (4.25) 

Since the system has 2 DOF and driving coordinates are ψϕ  and  we assign virtual 
displacement 0,0 =≠ δψδϕ  to the system. Virtual work of the all force effects has to be 
equal to zero and it can be written as 

( ) ( ) .0542 =−+−− yyrkyymIM h δψδδϕϕ &&&&  (4.26) 

Substituting (4.25) into the last equation we can come to 

( ) ( ) ( ) 0cossincossincos 2252
2

2242 =−+−−− δϕϕϕψδϕϕϕϕϕϕδϕϕ rrrkrrrmIM h &&&&& . (4.27) 

Dividing by δϕ  the first equation of motion takes a form 

( ) ( ) .0cossincossincos 2252
2

2242 =−+−−− ϕϕψϕϕϕϕϕϕ rrrkrrrmIM h &&&&&  (4.28) 
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Similar approach can be applied for the second driving generalized coordinate. Now we 
assign virtual displacement 0,0 ≠= δψδϕ  to the system. Then the virtual work of  load 
acting on the system will be   

( ) ( ) .0555 =−−+− δψψδψψ ryrkIM z &&  (4.29) 

Substituting y from (4.25) into the last equation and dividing by δψ−  we can obtain the 
second equation of motion in form 

.0sin52
2

55 =−++ ϕψψ rkrkrIM z &&  (4.30) 

The solution to the equations (4.28) and (4.30) is realizable only in numerical way. 
Respecting fact that the second derivatives in these equations are linear we can express both 
equations in form 

( )[ ]

( )
.

sin1

cossincossin
cos

1

2
552

5

225
22

2422
242



















−−

−++
+=





ψϕ

ϕϕψϕϕϕ
ϕ

ψ
ϕ

krMrkr
I

rrrkrmM
rmI

z

h &

&&

&&
 (4.31) 

It can be expressed in matrix way as 

( ),,ˆ xxgx &&& =  (4.32) 

( )
( )[ ]

( )
.

sin1

cossincossin
cos

1

,ˆ,
2

552
5

225
22

2422
242



















−−

−++
+=



=

ψϕ

ϕϕψϕϕϕ
ϕ

ψ
ϕ

krMrkr
I

rrrkrmM
rmI

z

h &

&xxgx (4.33) 

Using some standard procedure for solution of ODE (ordinary differential equation) system it 
is convenient to transfer the system (4.32) to the double ODE system of the first order. Let us 
put     

., 21 xyxy == &  (4.34) 

The the system (4.32) takes form 

( )
.

,,ˆ

12

211

yy
yygy

=
=

&

&
 (4.35) 

Two ODE systems (4.35) can be rewritten into compact form 

( )   ,zgz =&  (4.36) 

( )
( )





=



=

1

21

2

1 ,ˆ
, where

y
yyg

zg
y
y

z . (4.37) 

There exist common procedures for ODE system in standard form (4.36) which are part of 
SW like e.g. MATLAB or MATHEMATICA 
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4.2.2 Application of PVD for systems described by generalized coordinates (m>n)  
 
If the system is described by nm >  generalized coordinates there exists Pfaff’s form (4.9) 
between dependent and driving coordinates. It can be expressed with respect to isochronic 
variation 0=tδ in form 

( ) ( )[ ] .,,, 21 0
x
x

xAxAxA =



=

z

nTTT tt
δ
δ

δ  (4.38) 

( ) ( ) ( )[ ] ( ) ( ) 1,1,,
2

,
121 ,,,,,,,,,,, r

z
n

n
rrTnrT

z

nTTT ttttt RxRxRxARxA
x
x

xxAxAxA ∈∈∈∈



==  

Let us remind that n
n Rx ∈  are driving generalized coordinates while ( )nmrr

z −=∈ Rx  are 
dependent (redundant) coordinates. The matrix was already defined by relation (4.13).  
 
Note: 
The question suggests itself why we should operate with larger number of coordinates m then 
is the number of driving coordinates n (DOF). Answer: It is sometimes impossible to express 
dependent coordinates by means of driving ones in explicit way. Then it is not possible to 
determine derivatives and virtual changes of dependent coordinates by means of driving 
coordinates and its derivatives and virtual changes.  
 
The relation (4.16) can be written as 

0FDF =++ va , (4.39) 

where   

∑∑∑ ===
i

viv
i

i
i

aia FFDDFF     resp.     ,     resp.,   (4.40) 

are resulting action and inertial and coupling generalized forces, respectively, acting in 
directions of individual m generalized coordinates. Firstly we can write the relation for virtual 
work of all forces (4.39) 

( ) .0=++ va
T FDFxδ    (4.41) 

Virtual work of coupling forces acting in perfect couples is zero it means that .0=v
TFxδ  Now 

the relation (4.38) can be rearranged into form (the equation (4.38) is transposed) 

.0Ax =Tδ  (4.42) 

The equation (4.42) represents r equations on row. To be these equations independent of each 
other its linear combination equating to zero must exist. It means there exists a vector of linear 
combination λ  satisfying condition   

.0=AλxTδ    (4.43) 

Adding both equations (4.41), (4.43) and respecting 0=v
T Fxδ , we can come to 

( ) .0=++ AλDFx a
Tδ  (4.44) 

In this moment each of equations obtained in system (4.44) must be satisfied. It means that 

.0AλDF =++a  (4.45) 
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The last relation represents m differential equations for rm +  unknowns rm RλRx ∈∈ , .                    
Now we add to the system (4.45) coupling condition (4.38)  

0xA =δT  (4.46) 

divided by tδ . This condition gets a form 

.0xA =&T  (4.47) 

Derivating the last equation with respect to time we can come to 

.xAxA &&&& TT −=  (4.48) 

Let us subdivide the action forces into external (independent) forces and forces depending on 
generalized coordinates and time according to relation 

( ) ( )tt Nea ,,xxffF &−= . (4.49)  

Further we can express inertia forces which are linear function of generalized accelerations x&&  
and non-linear function of generalized displacements and velocities xx & and in form 

( ).,xxfxMD &&& D−−=  (4.50) 

Repscting (4.49) and (4.50) we can rewrite the equation (4.45) as 

( ) ( ) ( ).,,, xxfxxffAλxM &&&& DNe tt −−=−   (4.51) 

This equation together with (4.48) can be rearranged into compact form 

( )
( )

( ) ( ) ( ) ( )
( ) .

,
,,,,,

,
,









=








−

−−
=








−








xxb

xxa
xA

xxfxxff
λ

x
0xA
xAM

&

&

&&

&&&& ttt
T

DNe
T   (4.52) 

The last equation represents system of algebraic-differential equations. Some possibility of its 
solution will be shown later.  

 
Note: 

Practical realization of this methodology will be performed in this way: 
a) We assign always only one non-zero virtual displacement to the system while other 
displacements will be equal to zero. After dividing by this virtual displacement we obtain m 
equations.  

b) Then we add system (4.48) and obtain the whole system of rm +  algebraic-differential 
equations 
 

Example 4.3 
Let us assemble equation of motion os the system see Fig. 4.8 in such a way that number of 
generalized coordinates will be ( )ym ,,,3 ψϕ= . Vector of generalized coordinates and their 
virtual increments will be written in form  

.,















=
















=

yy δ
δψ
δϕ

δψ
ϕ

xx  (4.53) 
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Because number of DOF is 2=n  it is necessary to supplement 1=−= nmr  coupling 
condition 

.0sin2 =− ϕry  (4.54) 

Pfaff’s form can be obtained by differentiation of coupling condition (4.54). Then we can 
come to  

.0cos2 =− δϕϕrdy  (4.55) 

The last relation can be rewritten into matrix form 

[ ] .
1
0
cos

1,0,cos
2

2















−
=⇒
















−=

ϕ

δ
δψ
δϕ

ϕδ
r

y
rT AxA  (4.56) 

Derivating matrix A with respect to time we obtain 

.
0
0
sin2
















=

ϕϕ&
&

r
A  (4.57) 

Substituting (4.57) and (4.53) into (4.44) we achieve 

[ ] ( )
( )

.0
1
0
cos

,,
2

45

555

2

=


























−
−

















−−
−−−−

−
λ

ϕ

ψ
ψψ

ϕ
δδψδϕ

r

ymyrk
yrkrIM

IM
y z

h

&&

&&

&&

 (4.58) 

Therms staying at yδδψδϕ ,,  are independent and thus they have to be zero. Then three 
equations follow from (4.58) 

( )
( ) .0

,0
,0cos

45

555

22

=−−−
=−−−−

=+−

λψ
ψψ
ϕλϕ

ymyrk
yrkrIM

rIM

z

h

&&

&&

&&

 (4.59) 

Now we add equation (4.48) and come to 

[ ] [ ] .00sin1,0,cos 22










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




−=


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




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




−

y
r

y
r

&

&

&

&&

&&

&&

ψ
ϕ

ϕψ
ϕ

ϕ  (4.60) 

These four equations can be written in matrix form 

( )
( )

.

sin0,1,0,cos
1,,0,0
0,0,,0
cos,0,0,

2
2

5

55

2

4

5

22









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

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



−
−

−−−
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

















−

















−

−

ϕϕ
ψ

ψ

λ

ψ
ϕ

ϕ

ϕ

&

&&

&&

&&

r
yrk

yrkrM
M

y
r

m
I

rI

z

h

 (4.61) 

Correctness of the last equation will be controlled bellow by application of Lagrange’s 
equations with multipliers.  
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4.3. Hamilton’s principle 
 
Development of Hamilton’s principle can be shown on the mass point system. We can start 
from PVD in form (4.41) which contains only forces doing work 

( ) .0=+ DFx a
Tδ  (4.62) 

In this moment we leave out subscript “a”. New subscript will mark out number of mass point 
so that virtual work of all forces acting on the system can be written as  

( ) ( )

( ) ,0
2
1

=






+−=

=



 −−=−=−

∑∑

∑∑∑∑

44 344 21

&&&

&&&&&

43421

&&

kE

i
i

T
ii

i
i

T
ii

i
i

T
ii

T
ii

i
ii

T
i

W

i
i

T
i

i
iii

T
i

m
dt
dmW

dt
dmWmm

xxxx

xxxxxxFxxFx

δδδ

δδδδδδ

δ  (4.63) 

where kde ix  represents radius-vector and ixδ is corresponding virtual increment. Correctness 
of the last relation can be proved by reversed process in such a way that we will differentiate 
it  

( ) ∑∑∑ =+=








i
i

T
ii

i
i

T
ii

T
ii

i
i

T
ii mmm .

2
1

2
1 xxxxxxxx &&&&&&&& δδδδ   (4.64) 

Let us remind that both terms in brackets are scalar quantities so that their values are  
unchangeable under transposition. The equation (4.63) can be then rewritten into form 

( ).∑=+
i

i
T
iik dt

dmEW xx &δδδ  (4.65) 

Let us perform the integration from 21   to tt  and obtain  

( ) ( ) ( ) .
2

1

2

1

∑ ∫∫ =+
i

t

t
i

T
ii

t

t
tk dt

dt
dmdtWE xxx &δδ  (4.66) 

 
Hamilton‘s principle: 
 
Choosing two fixed points of trajectory finaliinitiali xx ,,  and  in fixed instants 21   tandt  , see Fig. 
4.9, then so called action achieves an extrem when doing real motion. 

 

 
 

Fig. 4.9 
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The action is represented by the integral (Hamilton’s functional) 

( ) ( ) .
2

1

extremdtWES
t

t
tk →+= ∫ x  (4.67) 

This statement cen be easily proved when we express the integral on the right hand side of 
(4.66) whose value is zero, 

( ) [ ] ,02

1

2

1

== ∑∑ ∫
i

t
ti

T
ii

i

t

t
i

T
ii mdt

dt
dm xxxx && δδ   (4.68) 

because the variations T
ixδ  vanish in the boundary points. For this reason even left hand side 

of (4.66) will be zero. It means that 

( ) ( ) .0
2

1

=+= ∫
t

t
tk dtWES xδδ  (4.69) 

If the variation is zero the action gains an extrem (minimum-without proof). For this reason 
we can say that the real trajectory minimizes integral (4.67). Own Hamilton’s principle has 
small practical meaning but serves to development of Lagrange’s equations. 
 
 
4.4 Lagrange’s equations of the second kind 
  
Let us briefly rewrite  

,*WW e
T

i
i

T
i δδδδ === ∑ fxFx  (4.70) 
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δ  (4.71) 

The star merks fact that the variation is refered only to the trajectory but not to the force. Respecting 
(4.70) we can then rewrite (4.69) to the form   

,0
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2

1

=+ ∫∫
t

t
e

T

I

t

t
k dtdtE fxδδ
321

 (4.72) 

Integral I can be rearranged (following variation is isochronic-it means that time understood to be 
constant) 
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Integrating we have used the per-partes method. Substituting (4.73) into (4.69) we can come to 

∫ =



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






∂
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kkT dtE
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dE f

xx
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&
δ  (4.74) 

The last relation expresses inner product of two vectors forming summ of products of independent 
quantities (individual components of vector xδ ), so that each of these products have to be zero. Its 
consequence is fact that each square bracket in (4.74) has to be equal to zero 
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.e
kk EE

dt
d f

xx
=

∂
∂

−







∂
∂

&
 (4.75) 

 
This is a system of Lagrange’s equations of the second order expressed in a matrix form. Individual 
equations can be written as  

,,...,2,1, njF
x
E

x
E

dt
d

j
j

k

j

k ==
∂
∂

−







∂
∂

&
  (4.76) 

where n is number of DOF. The right hand side contains external forces while inertia forces are 
represented by kinetic energy.  

 

4.5 Lagrange’s equations of mixed type (LRMT) 
 
The use of LRMT described by nm >  generalized coordinates (n is number of DOF) for 
assembladge of equations of motion is advantageous esspecially in the case when redundant 
coordinates can not be explicitly expressed by means of driving coordinates. Then we must 
add nmr −=  coupling conditions  

( ) ,,...,2,1,0 rjf j ==x   (4.77) 

to those m equations describing dynamic equilibrium conditions. The last relation can be 
written in matrix form    

( ) ( ) ., rRxf0xf ∈=  (4.78) 

It is about the problem of bound extreme. The Hamilton’s principle will be extended by the 
corresponding vector of Lagrange’s multipliers 

( )[ ]
( )

.
2

1

extremedtWES
t

t
t

T
k →++= ∫ x

λxf  (4.79) 

To calculate a functional variation let us differentiate the equation (4.79) 

( )( )
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λxfδδδ  (4.80) 

where 

( ) ( )
x

xfxxf
∂

∂
=

T
TT δδ  (4.81) 

This relation is coupling condition in differential form which is represented by Pfaff’s form 
(4.42). Comparing (4.81) and (4.42) we can come to the fact that the matrix of Pfaff’s form 
takes form 

( ) ( ) .,mr
T

R
x

xfxA ∈
∂

∂
=  (4.82) 

Variation of kinetic energy and work expressed by relation (4.74) after substituting into (4.80) 
brings an equation  
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Integral (4.83) will be zero when its integrand will be zero too, it means  

( ) ,λ
x

xff
xx ∂

∂
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∂
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e
kk EE
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&
 (4.84) 

which respecting (4.82) can be rewritten in form  

( ) .λxAf
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

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∂
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kk EE
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This equation is itemized as  
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 (4.84b) 

Equations (4.84) represent rnm += algebraic-differential equations for unknowns 
( ) 1,mt Rx ∈ and vector of Lagrange‘s multipliers 1,rRλ ∈ . The system will be supplemented by 

coupling condition (4.78) 

( ) ( ) ., rRxf0xf ∈=  (4.85) 

Both equations (4.84) and (4.85) present system of rnrm 2+=+  algebraic-differential 
equations for rm +  unknowns ( ) 1,mt Rx ∈  and 1,rRλ ∈ . From practical reasons it is suitable 
to twice differentiate the equation (4.85) 

( ) ( ) ( ) ,0xxAx
x
xfxf ==

∂
∂

= &&& T  (4.86) 

( ) ( ) ( ) ( ) ( ) .0xxAxxAxxAx
x
xfxf =+=+

∂
∂

= &&&&&&&&&& TTT  (4.87) 

Now we rearrange the relations staying on the left hand side of (4.84). Derivatives of kinetic 
energy ( )xx &,kk EE =  can be expressed in form 
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where  
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Now we rearrange (4.84a) and (4.87) into form 
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( ) ( ) .xxAxxA &&&& TT −=  (4.93) 

Let us mark 
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and both equatins (4.92) and (4.93) take a form  
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which is identical equation with (4.52) obtained by the PVD application.  

 

4.6 Application of Lagrange’s equations of the second kind and mixed type 
 
To show the connection between virtual displacement principle and Lagrange’s equations of 
the second kind let us solve the examples 4.1, 4.2 and 4.3 by means of Lagrange’s equations 
 
Example 4.4 
 
The mechanism with harmonic cam is depicted in Fig. 4.7.  Let us assemble the equation of 
motion by means of Lagrange’s equations of the second kind using description by driving 
coordinates. This mechanism has 1 DOF and the cam angle was chosen as driving generalized 
coordinate. The coordinates z, y and its derivatives and variations (differential increments) 
should be expressed explicitly by means of angle φ and its variation  

.cos,cossin
cos,cossin

ϕϕδϕϕδϕ
ϕϕδϕϕδϕ

&&

&&

ezezez
eyeyrey

==⇒=
==⇒+=

 (4.96) 
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Kinetic energy can be written in form 
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.cossin22
3 ϕϕϕ

ϕ
&emEk −=

∂
∂  (4.99) 

Generalized force can be determined in the same way like in virual displacement application. 
It means to compare all force quantity (except inertial) virtual work with the virtual work of 
generalized force. Taking (4.76) into account we can write  

( ) ,23 zgmygmFMF δδδϕδϕϕ −+−=  (4.100) 

And respecting (4.96) we can come to 

( ) δϕϕδϕϕδϕδϕϕ coscos 23 gemegmFMF −+−=  (4.101) 

and further 

( ) .coscos 23 ϕϕϕ gemegmFMF −+−=  (4.102) 

Substituting (4.98), (4.99) and (4.102) into (4.76) ( )1=n  we have equation 

[ ] ,0cossincos 2
2

333 =+−++−− ϕϕϕϕϕϕ egmememgmFIM A &&&&&  (4.103) 

identical with (4.24). 
 

Example 4.5 
The system with 2 DOF is depicted in Fig. 4.8.  Let us assemble the equations of motion by 
means of Lagrange’s equations of the second kind using description by driving generalized 
coordinates ψϕ  and . System position is described by three coordinates y and  , ψϕ from 
which y can be explicitly expressed by means of ϕ  in form  

.cos,cossin 222 ϕϕδϕϕδϕ && ryryry ==⇒=  (4.104) 

Kinetic energy is written as 

.
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2
1 2

5
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4
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2 ψϕ &&& IymIEk ++=  (4.105) 

Having expressed kinetic energy by means of driving generalized coordinates and respecting 
(4.104) we can write 

.
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Derivatives needed for substitution into (4.76) have form 
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.cossin22
24 ϕϕϕ

ϕ
&rmEk −=

∂
∂  (4.108) 

Now let us give virtual displacement 0,0 =≠ δψδϕ to the system. The generalized force ϕF  
can be obtained by comparison of generalized force work and force effects acting on the 
system (except inertial effects) corresponding to mentioned virtual displacement    

( ) .5 yyrkMF h δψδϕδϕϕ −+=   (4.109) 

After substitution of (4.104) into (4.109) we obtain 

( ) δϕϕϕψδϕδϕϕ cossin 225 rrrkMF h −+=  (4.110) 

and after cancelation by δϕ  we can come to 

( ) .cossin 225 ϕϕψϕ rrrkMF h −+=  (4.111) 

Let us substitute (4.107), (4.108) and (4.111) into (4.76) and then we can get the first equation 
of motion  

( ) ,cossincossincos 225
22

24
22

242 ϕϕψϕϕϕϕϕϕ rrrkMrmrmI h −+=−+ &&&&&  (4.112) 

which is identical equation with (4.28). The similar approach will be used for the second 
driving generalized coordinate.  
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.0=
∂
∂

ψ
kE  (4.114) 

Let us give virtual displacement 0,0 ≠= δψδϕ  to the system and compare the generalized 
force ψF  virtual work with the wirtual work of force effects acting on the system (except 
inertial effects) corresponding to that virtual displacement    

( ) .sin 525 δψϕψδψδψψ rrrkMF z −−−=   (4.115) 

Canceling by δψ we can write 

( ) .sin 525 rrrkMF z ϕψψ −−−=  (4.116) 

Substituting (4.113), (4.114) a (4.116) into (4.76) we can come to the second equation of 
motion in form 

( ) ,sin 5255 rrrkMI z ϕψψ −−−=&&  (4.117) 

identical with (4.30) which was obtained by application of the virtual displacement principle. 

 
Example 4.6 

 
As the latest demonstration we can show an example similar to 4.3 (Fig. 4.8) presenting 
equation of motion assembladge of the system whose position is described by three 
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generalized coordinates ( )ym ,,,3 ψϕ= . Vector of generalized coordinates and its virtual 
increments will likewise in example 4.3 have form   
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
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xx  (4.118) 

Because the system has 2 DOF it is necessary to add 1=−= nmr  coupling condition  

( ) ( ) .0sin2 =−== ϕryf xxf  (4.119) 

Kinetic energy can be expressed by means of those mentioned generalized coordinates in 
form 
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Corresponding derivatives can be written as 
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EEE kkk

ψϕ
 (4.122) 

Now let us give gradually non-zero virtual displacements: Taking 0,0,0 ==≠ yδδψδϕ  and 
comparing virtual works we can come to 

.hh MFMF =⇒= ϕϕ δϕδϕ  (4.123) 

Taking 0,0,0 =≠= yδδψδϕ  we can write 

( ) ( )yrkrMFryrkMF zz −−−=⇒−−−= ψδψψδψδψ ψψ 5555  (4.124) 

and for 0,0,0 ≠== yδδψδϕ  the corresponding virtual work  and generalized force will take 
form  

( ) ( ).55 yrkFyyrkyF yy −=⇒−= ψδψδ  (4.125) 

Derivatives of couplings (4.119) with respect to generalized coordinates take vector form 
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Now the first three algebraic-differential equations for unknowns λψϕ  and ,, y   can be 
assembled by substitution (4.126), (4.121-4.125) into (4.84b) 
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These equations can be written in matrix form 

( ) ( ) ,AλfxM += tt e&&  (4.127) 

where   
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Twice differentiated coupling vector (4.119) has to be added to (4.128),  (in this case only one 
component). 

( ) ( ) ,0sin2 =−== ϕryf xxf  (4.129) 

( ) ,0cos2 =−= ϕϕ&&& ryf x  (4.130) 

( ) ( ) ( ) .0sincos 2
22 ==+−= trryf T xxAx &&&&&&&&& ϕϕϕϕ  (4.131) 

Adding (4.131) in scalar form to the Eqs. (4.126) we can write down the total system of 
algebraic-differential equations in form 
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which is identic with the system (4.61) obtained by means of PVD. Similarly the matrix form 
of (4.131) can be added to the Eq. (4.127) and then we can come to  
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which is identic equation with (4.52) where the non-linear vector of general inertia forces 
( )xxf ,&D  and  vector of non-linear elastic and viscous forces ( )tN ,, xxf &  are zero vectors 
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5. Vibration of linear discrete systems 
 

We pay our attention in this chapter to weak damped linear vibrating dynamic discrete 
systems. It means they have finite number of DOF with so called comutative damping matrix 
(it will be bellow specified). These systems are generally described by system of ordinary 
differential equations (ODE) of the second order.  Moreover we will focuse to systems with 
constant symmetrical matrices M, B, K. For interested person for vibration of more general 
systems (continuum, discrete systems with general matrices, stochastic systems) we can 
recommend reference [5]. Further we supposse symmetrical matrices M, B, K and stability of 
system. There is whole family of stability definitions of vibrating systems. We restrict our 
stability definition to verbal expression marking as stable system such group of systems 
whose displacements stay finite without external excitation. Following this definition we can 
incorporate into this group also undamped vibrating systems which do not dissipate energy 
and whose displacements do not decay. Dissipative systems whose displacements are 
approaching to the equilibrium position without external action can be marked as 
asymptoticly stable. This chapter will contain only so called initial value problems whose 
solution always exist.     
 
Note: 
 
Initial value problem of matrix differential equation of r-th order (the highest derivative with 
respect of time) is understood as problem of solution of this differential equation respecting 
values of 1,...,1,0 −r -th derivatives of vector of unknowns in one time instant 0tt = and most 
frequently we will choose .00 =t  
 
 
5.1 Equation of motion 
 
The equation of motion can be assembled by means of methods of analytical mechanics 
presented in chapter 4. When the system is discrete and linear its equation of motion can take 
a form   

( ) ( ) ( ) ( ),tttt fKqqBqM =++ &&&  (5.1) 

where  ( ) nnn t RfRKBM ∈∈ ,,, ,  and ( ) nt Rq ∈ . Matrices KBM ,,  are frequently marked as 
mass, damping and stiffness matrices, respectively. Symbols ( )tf and ( )tq corresponds to 
vector of generalized forces and displacements, respectively. When the generalized 
displacement is rotation angle the corresponding meaning of generalized force is torque. For 
uniqueness of solution of equation (5.1) it necessary to give the initial conditions (see the last 
note) 

( ) ,00
nRqq ∈=  ( ) .00

nRqq ∈= &&  (5.2) 

The presented solution will use decomposition into vibration mode shapes (eigenvectors) by 
means of so called modal method. Starting point of mentioned method is determination of 
mode shapes (eigenvectors) and eigenvalues (modal analysis). The eigenvalues correspond to 
squares of eigenfrequencies whose units are [ ]srad / .  
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5.2 Modal analysis 
 
Modal quantities of weakly damped linear systems (eigenvectors and eigenvalues) are  
affected neither by input (excitation) nor by damping. Let us remind the relation between 
eigenfrequency of  damped and undamped system [2], respectively 

21 DD −Ω=Ω , (5.3) 

where DD ,, ΩΩ are successively eigenfrequency of damped system, undamped system and 
damping ratio, respectively. Suppossing that damping ratio of machine structures takes values 
from interval 05.001.0 ÷∈D  difference between eigenfrequancy of undamped and damped 
system is .325.155 Ω−÷−∈Ω−Ω=∆Ω eeD Then we can perform modal analysis of 
undamped and unexcited system whose motion is described by equation 

( ) ( ) .0KqqM =+ tt&&  (5.4) 

As experience has shown displacements of undamped systems vibrating by individual mode 
shapes are always in phase (0°) or in oposite phase (180°). It means that their time delays are 
equal to zero. Oposite phase can be expressed by oposite sign of amplitude. For this reason 
real aritmetics is sufficient for solution of (5.4) and it can be suppossed in form  

( ) tt Ω= sinvq , (5.5) 

where vibration in phase or in oposite phase is expressed by sign of vector component of v. 
Substituting (5.5) into (5.4) and canceling out by time function tΩsin  we can come to   

( ) 0vMK =Ω− 2 . (5.6) 

Equation (5.6) represents eigenvalue problem. Now we will supposse that defect of the matrix  
MK 2

iΩ−  (difference between matrix order and its rank) will be equal to the multiplicity of 
eigenvalue 2

iΩ . Then we can say that the system is of simple structure. This assumption is 
used to be almost always satisfied. Many methods for numerical solution to the eigenvalue 
problem  are presented in reference [5]. The non-trivial solution of (5.6) exists only if  
determinant of matrix MK 2Ω−  is equal to zero (this matrix is singular) it means 

 ( ) .0det 2 =Ω− MK  (5.7) 

Result of the solution of this characteristic equation is n real roots nii ,.......,2,1,2 =Ω . It is 
well known that eigenvalues of the problem BxAx λ= are real when matrices A  and B  are 
symmetrical. For vibrating systems the symbol iΩ means so called eigenfrequencies [rad/s] -
frequencies of system vibration without external effects-free vibration. Initial conditions 
decide about the contribution of the individual eigenfrequencies and mode shapes to the total 
response in free vibration.  The equation (5.6) can be solved by standard methods for solution 
of eigenvalue matrix equation BxAx λ= . These methods are presented for instance in [5].   
Substituting successively nii ,...,2,1,2 =Ω  into the equation 

( ) 0vMK =Ω− ii
2  (5.8) 

we can obtain n mode shapes (eigenvectors) nii ...,,2,1, =v . Because we také into account 
only systems of simple structure each one eigenvalue corresponds to one eigenvector. It 
means that for instance the eigenvalue 2

iΩ whose multiplicity is in corresponds to 
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in eigenvectors.  Eigenvectors corresponding to simple eigenvalues 2
jΩ  are determinated 

unequivocally except for multiplicative constant-matrix of coefficients in (5.8) has rank 
.11 =⇒− defectn  It can be realized in such a way that the first component of the vector jv is 

chosen and the other components are calculated to the end. For in multiple eigenvalue 2
iΩ we 

choose in components for each individual eigenvector in such a way that chosen subvectors 
are mutually independent and then we complete the other components.   
 
 
Orthogonality of eigenvectors 
Let us write the equation (5.8) for i-th and j-th eigenvalue. The first and the second equation 
let us pre-multiply by T

jv  and T
iv , respectively and the second transpose. Then we can come 

to 

( ) 02 =Ω− ii
T
j vMKv , (5.9) 

( ) 02 =Ω− ij
T
j vMKv . (5.10) 

Substracting this equations we have 

( ) .022 =Ω−Ω i
T
jji Mvv  (5.11) 

The consequence of the last relation is 

ji

ji
i

T
j Ω=Ω

Ω≠Ω





= for      
?
0

Mvv  . (5.12) 

Respecting (5.11) and (5.12) we can say that eigenvectors are orthogonal for different 
eigenvalues. For multiple eigenvalues the eigenvectors need not be orthogonal and for this 
reason it is suitable to orthogonalize them. For the bellow presented reasons we would ask to 
be valid 

,iji
T
j δ=Mvv  (5.13) 

where ijδ  is Kronecker delta. Let us assemble eigenvectors satisfying (5.13) as columns of  
special matrix we can write 

[ ] nn
n

,
21 ,,, RvvvV ∈= L . (5.14) 

The V matrix is called modal matrix satisfying condition   

,IMVV =T  (5.15) 

where nn,RI ∈ is identity matrix. The relations (5.13) and (5.14) express not only the 
orthogonality but even condition of norm .,...,2,1,1 nii

T
i ==Mvv  For this reason it is 

suitable to perform an orthonormalization.  Let us mark for this moment un-orthogonalized 
and un-normalized eigenvectors by tilda, it means 

[ ] .~,,~,~~ ,
21

nn
n RvvvV ∈= L  (5.16) 

This matrix satisfies condition 

,~~ QVMV =T  (5.17) 
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where nn,RQ∈ is almost diagonal matrix having non-zero off-diagonal elements done by 
products of eigenvectors correponding of the multiple eigenvalue 2

iΩ . These submatrices of 
the in -th order lay on the diagonal of Q . The orthonormalization can be performed in such a 
way that we decompose Q matrix by Choleski’s decomposition into two triangular matrices  

LLQ T= . (5.18) 

Matrix Q has to be symmetric and positively definite. This condition is satisfied when the M 
matrix is symmetric and positively definite too, it means decomposable by means of Choleski 
decomposition 11LLM T= . It can be proved that mass matrix M is always positively definite if 
it does not contain massless degrees of freedom. We can prove it expressing kinetic energy in 
quadratical form of general velocity vector (following form is valid for systems without 
rotation bodies).  

.
2
1 qMq && T

kE =  

 
The last relation holds always for ,0q ≠&  because kinetic energy can not have negative value. 
Then we can rewrite (5.17) into form   
 

.~~
11 QVLLV =TT  (5.19) 

 
From the relation (5.19) we can see that ,0>QxxT for arbitrary vector x because following 
(5.19) it can be said that 0~~~~

11 >= xxxVLLVx TTTT , where we marked xVLx ~~
1= . Let us mark 

VLL ~
1=  and we can obtain the relation (5.18) from (5.19). Substituting (5.18) into (5.17) and 

pre-multiplying whole equation by T−L  and post-multiplying by 1−L we can come to  
 

.~~ 1 ILVMVL =−− TT  (5.20) 
 
Comparing (5.20) and (5.15) we can say that orthonormalized modal matrix has form 
 

1~ −= LVV . (5.21) 
 
This way of orthogonalization is called as Schmidt’s orthogonalization proces. The modal 
matrix obtained according to (5.21) satisfies requirement (5.13) and its compact form (5.15). 
For simple eigenvalues ( ji Ω≠Ω <=> ji ≠ ) the matrix Q is diagonal 

{ },~~~~
i

T
i

T diag vMvQVMV ==  (5.22) 

and 













=−

i
T
i

diag
vMv

L ~~
11  . (5.23) 

It means that indicidual vectors are normalized following relation 

.~~
~

i
T
i

i
i

vMv
vv =  (5.24) 
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Respecting (5.13) let us rewrite (5.8) into form 
 

ijii
T
jii

T
j

ij

δ
δ

22 Ω=Ω=
321

MvvKvv , (5.25) 

which can be further rewritten in compact form  
 

ΛKVV =T , (5.26) 
 
where { }2

idiag Ω=Λ  is so called spectral matrix. The result of modal analysis of the 
mathematical models with weak damping and symmetrical metrices M, B, K is modal and 
spectral matrix, respectively, satisfying conditions   
 

ΛKVVIMVV == TT , . (5.27) 
 
Relations (5.27) can be written inversely in the following way  

( ) ., 111 −−−−− === ΛVVKVVVVM TTT  (5.28) 

 

5.3 Free vibration of the weakly damped systems with commutative damping matrix 
 
This sub-chapter will be focused on mathematical models with so called commutative 
damping matrix only. The commutative damping matrix is matrix satisfying condition 
 

{ },2 ii
T Ddiag Ω== ΓBVV   (5.29) 

 
which means that it is diagonalizable by means of modal matrix like matrices M and K. 
Because Γ is diagonal it has to commutate with any diagonal matrix e.g. .Λ  Equality 
 

ΓΛΛΓ =  (5.30) 
 
can be rewritten by means of relations (5.27) and (5.29) into form  
 

.__ KVVBVVBVVKVV TTTT =  (5.31) 
 
Inverting the first relation (5.27) ( IMVV =T ) we can obtain 
 

IVMV =−−− 111 . (5.32) 
 
Let us insert this matrix into indicated blanks in (5.31) and obtain condition of damping 
matrix commutativity in form 
 

.11 KBMBKM −− =  (5.33) 
 
A special case of commutative damping matrix is matrix of so called proportional damping 
when the damping matrix is linear combination of mass and stiffness matrices, it means   
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.KMB βα +=  (5.34) 
 
The possibility of diagonalize B matrix can be shown by substituting (5.34) into (5.29) and 
than we can come to relation 
 

( ) .ΛIKVVMVVVKMVBVV βαβαβα +=+=+= TTTT  (5.35) 
 
The result is sum of two diagonal matrices which is diagonal matrix too. Let us remind the 
equation of motion describing free vibration of the systems with commutative damping matrix 
in form (5.1) with null right hand side 
 

( ) ( ) ( ) 0KqqBqM =++ ttt &&&  (5.36) 
 
and null initial conditions 
 

( ) ( ) .0,0 00 qqqq && ==  (5.37) 
 
Instead of general displacement vector let us introduce vector of modal coordinates following 
form 
 

( ) ( ).tt Vxq =  
 
Substituting the last relation into the equation of motion (5.36) and pre-multiplying whole 
equastion by matrix TV  we can come to matrix equation 
 

( ) ( ) ( ) ,0xKVVxBVVxMVV
ΛΓI

=++ ttt TTT
321&321&&321  (5.38) 

 
which is system of n independent differential equations whose i-th one has form  
 

( ) ( ) ( ) 02 2 =Ω+Ω+ txtxDtx iiiiii &&&  (5.39) 
 
and solution [7] 
 

( ) ( ),sincos ttetx DiiDii
tD

i
ii Ω+Ω= Ω− βα  (5.40) 

 
where 21 iiDi D−Ω=Ω  is i-th eigenfrequency of damping vibration. The relation (5.40) can 
be written down in matrix form 
 

( ) ( ) ( ) ( )[ ],βSαCEx tttt +=  (5.41) 
 

( ) ( ) ,

cos

cos
cos

, 2

1

22

11



















Ω

Ω
Ω

=





















=

Ω−

Ω−

Ω−

t

t
t

t

e

e
e

t

Dn

D

D

tD

tD

tD

nn

OO
CE  (5.42) 
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( ) .,,

sin

sin
sin

2

1

2

1

2

1



















=



















=



















Ω

Ω
Ω

=

nnDn

D

D

t

t
t

t

β

β
β

α

α
α

MMO
βαS  (5.43) 

 
Turning back to the original generalized coordinates we can come to 
 

( ) ( ) ( ) ( ) ( )[ ].βSαCVEVxq ttttt +==  (5.44) 
 
To obtain vectors of integral constants α  and β  we need the first derivation of general 
displacement vector (5.44) with respect to time having form  
 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ],βCαSΩVEβSαCEVDΩq ttttttt D +−++−=&    (5.45) 
 
where    
 



















Ω

Ω
Ω

=



















Ω

Ω
Ω

=



















=

Dn

D

D

D

nnD

D
D

OOO
2

1

2

1

2

1

,, ΩΩD . (5.46) 

 
Substituting initial conditions (5.37) into relations (5.44) and (5.45) we have 
 

⇒= Vαq0 0
1qVα −= , 

( ).0
1

0
11

0 qVVDΩqVΩββΩVαVDΩq −−− +=⇒+−= && DD  (5.47) 
 
Let us substitute the resulting vectors of integral constants into (5.44) and come to the relation 
 

( ) ( ) ( ) ( ) ( )[ ].0
1

0
11

0
1 qVVDΩqVΩSqVCVEq −−−− ++= &Dtttt  (5.48) 

 
Vector of generalized velocities can be obtained by substitution of (5.47) into (5.45). 
Inversion of the diagonal matrix DΩ is very simple (all eigenfrequencies are non-zero) but 
inversion of matrix V can be simplified in such a way that the orthogonalization relation 
(5.15) will be post-multiplied by matrix 1−V  and then we can write  

.1 MVV T=−  (5.49) 

Following the last relation we can rearrange (5.48) into form 
 

( ) ( ) ( ) ( ) ( )[ ].00
1

0 MqVVDΩqMVΩSMqVCVEq TT
D

T tttt ++= − &  (5.50) 
 
For undamped systems these relations holds ,0=iD  it means, that ( ) ΩΩ0DIE === Dt ,, , 

( ) { } ( ) { }.cos,sin tdiagttdiagt ii Ω=Ω= CS  
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5.4 Forced vibration of the weakly damped systems with commutative damping matrix 
 
For solution of forced vibration of these models we transfer equation of motion (5.1) into 
canonical form in modal coordinates in similar way as we done it in the case of free vibration 
(Eq. 5.38). Let us introduce transformation ( ) ( )tt Vxq =  and substitute into (5.1) and then the 
resultant equation pre-multiply by .TV  Now we can come to 

( ) ( ) ( ) ( ) .tttt TTTT fVxKVVxBVVxMVV
ΛΓI

=++ 321&321&&321  (5.51) 

The last matrix equation corresponds again to the system of n independent differential 
equations   

( ) ( ) ( ) ( )ttxtxDtx T
iiiiiii fv=Ω+Ω+ 22 &&& . (5.52)  

To shorten writing in this moment we leave out subscript i and so we solve the equation   

( ) ( ) ( ) ( )ttxtxDtx Tfv=Ω+Ω+ 22 &&& , (5.53) 

whose solution consists of the homogeneous solution 

( ) ( )ttetx DD
tDH Ω+Ω= Ω− sincos βα   (5.54) 

and particular solution which is formed by fundamental functions contained in the 
homogeneous solution (5.54). Both fundamental functions are marked by symbols 

( ) ( ) .sin,cos 21 tetytety D
tD

D
tD Ω=Ω= Ω−Ω−   (5.55) 

It should be said that the fundamental functions (5.55) satisfy the equation (5.53) with zero 
right hand side. We will look for the particular solution of the equation (5.53) in the form of 
linear combination of fundamental functions (briefly written) 

( ) ( ) ( ) ( ) ( ) 22112211 ycyctytctytctxP +=+= ,  (5.56) 

where ( ) ( )tctc 21  and  are desired time functions (varied constants). Let us substitute this 
supposed particular solution into the equation (5.53). For this reason let us differentiate the 
equation (5.56) with respect to time (briefly written) 

( ) 22221111 ycycycyctxP &&&&& +++= , (5.57) 

and choose from all solutions only solutions satisfying   

02211 =+ ycyc && . (5.58) 

Then we obtain the first and second derivation of the particular solution in form  
( ) 2211 ycyctxP &&& += , (5.59) 

( ) 22221111 ycycycyctxP &&&&&&&&&& +++= . (5.60) 

Substituting (5.56), (5.59) and (5.60) into the original equation of motion and respecting fact 
that the nfundamental solution satisfies corresponding homogeneous equation we can write 
(expressions marked by star and double star are in summ equal to zero) 

{ { { { { { ( )tycycycycDycycycyc Tfv=









+Ω+










+Ω++++

**
22

*
11

2

**
22

*
11

**
2222

*
1111 2 &&&&&&&&&&  (5.61) 
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and then  

( )tycyc Tfv=+ 2211 &&&& . (5.62) 

From „framed“ equations (5.58) and (5.62) we can get 

( ) ( ) .,
2121

1
2

2121

2
1 yyyy

ytc
yyyy
ytc

TT

&&
&

&&
&

−
=

−
−

=
fvfv  (5.63) 

Respecting (5.55) denominators of time functions can be expressed in form 
tD

Deyyyy Ω−Ω=− 2
2121 &&  (5.64) 

and after substitution into (5.63) we can come to 

( ) ( ) .cos1,sin1 2
2

1
1 dt

dctetc
dt
dctetc D

tDT

D
D

tDT

D

=Ω
Ω

==Ω
Ω

−= ΩΩ fvfv &&  (5.65) 

Having multiplied both equations by dt we separate unknowns and after integration obtain 

( ) ( ) .cos1,sin1

0
2

0
1 ∫∫ Ω

Ω
=Ω

Ω
−= ΩΩ

t

D
DT

D

t

D
DT

D

detcdetc ττττ ττ fvfv  (5.66) 

Substituting (5.66) into (5.56) we can write 

( ) ( ) +ΩΩ
Ω

−= Ω−Ω∫ tedettx D
tD

t

D
DT

D

P cossin1

0

τττfv   

( ) ( ) ( ) ( ) .sin1sincos1

00
∫∫ −Ω

Ω
=ΩΩ

Ω
+ −Ω−Ω−Ω

t

D
tDT

D
D

tD
t

D
DT

D

dtettedet ττττ ττ fvfv  (5.67) 

Let us turn back to the subscripts i for individual solutions. Total solution of i-th modal 
coordinate can be expressed in form of summ of homogeneous (5.54) and paticular (5.67) 
solutions (written with subscript i) 

( ) ( ) ( ) ( ) ( ) .sin1sincos
0

τττβα τ dtettetx
t

Di
tDT

i
Di

DiiDii
tD

i
iiii ∫ −Ω

Ω
+Ω+Ω= −Ω−Ω− fv  (5.68) 

The last relation can be written in compact form 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )∫ −−++= −
t

T
D dtttttt

0

1 ττττ fVSEΩβSαCEx . (5.69) 

Further we can turn back to generalized coordinates by means of transformation relation 
( ) ( ),tt Vxq =  and then we obtain 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )∫ −−++= −
t

T
D dtttttt

0

1 .ττττ fVSEVΩβSαCVEq  (5.70) 

Matrices contained in (5.70) were defined in relations (5.42) until (5.46). Vectors of integral 
constants βα   and  can be obtained from initial conditions. Therefore we have to derivative 
last relation with respect to time. Time is contained not only in integrand but in limit of 
integration, too. For this reason let us remind the relation for derivative of integral 
 

( ) ( )
( )

( )

ττ
ϕ

ϕ

dtftg
t

t
∫=
2

1

,  (5.71) 
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with respect to parameter t which has form 
 

( )
( )

( )

( ) ( )[ ] ( ) ( )[ ].,,,
1

\
12

\
2

2

1

ttftttftd
t
tf

dt
dg t

t

ϕϕϕϕττϕ

ϕ

−+
∂

∂
= ∫  (5.72) 

 
In this case 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )∫∫ −−+−−−=








−−
t

T
D

t
T dttttdtt

dt
d

00

.ττττττττττ fVCEΩSEDΩfVSE

 (5.73) 
 
The second and third term in (5.72) are equal to zero. Now we can express differentiation of 
the whole vector of generalized displacements (5.70) in form 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]+−++−= αSβCΩVEβSαCEVDΩq ttttttt D&  

( ) ( ) ( ) ( )[ ] ( )∫ −−+−−−+ −
t

T
DD dtttt

0

1 .ττττττ fVCEΩSEDΩVΩ  (5.74) 

Substituting initial conditions into (5.70) and (5.74) we can write ( 0=t ) 
 

00
1

0 MqVqVαVαq T==⇒= − , (5.75) 
 

( ).00
1

00 MqVDΩqMVΩββVΩMqVVDΩq
α

TT
DD

T +=⇒+−= − &
43421

&  (5.76) 

 
Total solution then can be written as 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) .
0

1
00

1
0 ∫ −−+++= −−

t
T

D
TT

D
T dtttttt ττττ fVSEVΩMqVDΩqMVΩSMqVCVEq &

 (5.77) 
 
As it is well known from the theory of differential equations particular solution can be 
arbitrary function satisfying (besides desired conditions of differentiability) corresponding 
differential equation with right hand side. In this case when we came to particular solution by 
means of variation of constants (convolutory integral (5.67)) this solution corresponds to total 
solution of equation with zero initial conditions. For this result integral constants of the total 
solution are identical with those ones of itself homogeneous solution. Therefore the first 
summand in (5.77) is identical with solution of free vibration (5.50). We should aware that 

.1 MVV T=−  Now it can be concluded that total solution (5.77) consists of solution of 
equation (5.1) without excitation and the solution with excitation but with null initial 
conditions.  In case when we choose or estimate particular solution in the other form than 
convolutory integral (5.67), e.g. in form of excitation, it is necessary to compute integral 
constants from the total solution.      
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5.5 Particular solution estimation of the harmonically excited system using complex 
form of the equation of motion 
 
Let us suposse that behaviour of the vibrating system is described by equation of motion  
 

( ) ( ) ( ) ttttt sc ωω sincos ffKqqBqM +=++ &&& , (5.78) 
 
where cf  and sf  is vector of sine and cosine amplitudes, respectively. Both vectors are real 
valued. The right hand side can be written in form 

.
2

coscossincos 





 −+=+

πωωωω tttt scsc ffff  (5.79) 

The real excitation (5.79) can be seen as real component of complex excitation 

{.
2

coscos 22

i

iti
s

ti
c

ti

s
ti

csc eeeeett
−

−





 −

+=+=





 −+

π
ωω

πωωπωω ffffff  (5.80) 

Introducing complex amplitude of the excitation the last relation can be rewritten into form 

( ) ,ˆ titi
sc eei ωω fff =−  (5.81) 

where f̂  is mentioned vector of complex amplitudes of excitation. Verbally we can relation 
(5.81) comment in such a way, that the real part of complex amplitude vector of harmonic 
excitation is formed by cosine amplitude vector while the imaginary part is formed by 
negative taken sine amplitude vector.  Substituting relation for complex excitation (5.81) into 
the equation of motion (5.78) and introducing vector of complex displacements ( )tq̂ in the 
similar way like complex excitation we can write  

( ) ( ) ( ) .ˆˆˆˆ tiettt ωfqKqBqM =++ &&&   (5.82) 

Let us estimate particular solution according to the right hand side in form ( ) ti
aet ωqq =ˆ  and 

substitute it into the last equation. Than we obtain complex amplitude form of the equation 
(5.82) 

( ) ,ˆ2 fqKBM =++− aiωω  (5.83) 

from which we obtain the complex amplitude vector of displacements in form  

( ) ( ) ( ) ,ˆˆˆ 112 fHfZfKBMq ωωωω ==++−= −−ia  (5.84) 

where ( ) nn,CZ ∈ω is matrix of dynamic stiffness and ( ) nnf ,2 CH ∈= πω  is matrix of dynamic 
compliance (matrix of frequency transmission). Real particular solution is than real part of the 
complex vector of displacements   

{ } ( )( ){ } .sincossincosReRe tttitie irir
ti

a ωωωωω qqqqq −=++=  (5.85) 

 
Example 5.1 
 
Let us show for ilustration the total solution of the harmonically excited  undamped system 
having n DOF (degrees of freedom) by means of estimated particular solution and by means 
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of particular solution in form of convolutory integral. Let us suposse that behaviour of the 
vibrating system is described by equation of motion and initial conditions 

( ) ( ) ( ) ( ) .0,0,sincos 00 qqqqffKqqM &&&& ==+=+ tttt sc ωω  (5.86) 

Respecting (5.81) we rewrite the last equation into form 

( ) ( ) .ˆˆˆ tiett ωfqKqM =+&&  (5.87) 

Having performed modal analysis we obtain modal matrix V and spectral matrix Λ  from 
matrices M and K. By means of these matrices we can write down homogeneous solution 
which has in both cases the same form (5.44)  

( ) ( ) ( ) ( )[ ].ˆ βSαCVVxq tttt HH +==   (5.88) 

All symbols in (5.88) were explained above. Superscript H notes in this case homogeneous 
solution. The cap means that solution can be complex valued. Vectors of integral constants 

βα   and   will be computed differently in following two cases. Respecting fact, that the 
system is undamped, the matrix ( )tE  takes form 

( ) .IE =t  (5.89) 

 
a) Total solution obtained by means of particular solution estimation and modal 
transformation 
As a starting point we can perform modal transformation 

( ) ( )tt PP Vxq =ˆ .   (5.90) 

After substitution (5.90) into (5.87) and pre-multiplying by TV we can respecting (5.27) come 
to  

( ) ( ) tiTPP ett ωω fVΛxx ˆ2 =+− && . (5.91) 

Particular solution of the equation (5.91) can be estimated according to the right hand side in 
form 

( ) ti
a

P et ωxx = . (5.92) 

Substituting the last relation into (5.91) we can come to the amplitude equation 

( ) fVxIΛ ˆ2 T
a =− ω , (5.93) 

which has solution 

( ) .ˆ
12 fVIΛx T

a
−

−= ω   (5.94) 

After substitution (5.94) into (5.92) we can come to relation 

( ) ( ) tiTP et ωω fVIΛx ˆ12 −
−= . (5.95) 

Turning back to original coordinates following (5.90) we have 

( ) ( ) .ˆˆ 12 tiTP et ωω fVIΛVq −
−=    (5.96) 

The total solution is summ of the homogeneous (5.88) and particular (5.96) solution and has 
form 
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( ) ( ) ( )[ ] ( ) .ˆˆ 12 tiT ettt ωω fVIΛVβSαCVq −
−++=  (5.97) 

The real solution corresponds to real component of the complex solution (5.97). 
Homogeneous solution (5.88) and thus the first summand in (5.97) is real therefore 
homogeneous solution was not marked by cap. (Modal and spectral matrices and 
eigenfrequencies are real for this investigated system). For now we stay at total complex 
solution. Transfer to the real solution will be performed after computation of integral 
constants. They can be determinated from initial conditions. For this reason let us derivative 
(5.97) and write  

( ) ( ) ( )[ ] ( ) .ˆˆ 12 tiT eittt ωωω fVIΛVβCΩαΩSVq −
−++−=&  (5.98) 

After substitution of initial condition ( ) 00 qq = into (5.97) we come to  

( ) ,ˆ12
0 fVIΛVVαq T−

−+= ω  (5.99) 

and from (5.99) ( MVV T=−1 ) 

( ) .ˆ
12

0 fVIΛMqVα TT −
−−= ω  (5.100) 

Now let us substitute initial condition ( ) 00 qq && = into (5.98) and have 

( ) ,ˆ12
0 fVIΛVβVΩq Ti −

−+= ωω&  (5.101) 

and from (5.101) ( MVV T=−1 ) 

( )[ ]fVIΛVqMVΩβ ˆ12
0

1 TT i −− −−= ωω&  . (5.102) 

From vector form of integral constants follows that they are influenced by excitation too (by 
right hand side of the equation of motion (5.87)) and are generally complex valued. This rule 
does not hold only in case when particular solution is computed by means of variation of 
constants whose result is convolutory integral. Now let us express total solution (5.97) with 
substituted vectors of integral constants (5.100) and (5.102). After small rearrangement we 
can come to 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) .ˆˆ

ˆˆ
12121

0
112

0

tiTT

TTT

eti

tttt
ωωωω

ω

fVIΛVfVIΛΩVS

qMVΩVSfVIΛVCMqVVCq
−−−

−−

−+−−

−+−−= &
 (5.103) 

The real solution corresponds to the real part of the last relation. It will be shown below.  
 

b) Total solution by means of particular solution in the form of convolutory integral and 
modal transformation 

In this case we can use homogeneous solution directly in form (5.50) where 
( ) .,, 0DΩΩIE =≡= Dt  Than we have 

( ) ( ) ( ) .0
1

0 qMVΩVSMqVVCq &T
D

TH ttt −+=  (5.104) 

Now the homogeneous solution was marked without cap because it is real valued. Particular 
solution has form of convolutory integral (the second summand in (5.70)) where   

( ) ( ) .ˆ,, ωτττ i
D et ffΩΩIE =≡=−  
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It takes a form 

( ) ( ) .ˆˆ
0

1∫ −= −
t

iTP dett ττ ωτfVSVΩq  (5.105) 

Particular solution is again marked by cap because of complex excitation. Repscting  

( ) ( ),cossin1sin
0

22∫ ΩΩ−Ω−Ω
−Ω

=−Ω
t

tii ttiedte ννν
ω

ν
ν

ν
ωτ ω

ω
ττ  (5.106) 

we can rewrite (5.105) into form 

( ) ( ) ( ) ( )[ ] fVCSΩIIΛVq ˆˆ 112 TtiP ttiet −−−= −−
ωω ω   (5.107) 

and total solution is sum of (5.104) and (5.107) 

( ) ( ) ( ) ( ) ( ) ( )[ ] ,ˆˆ 112
0

1
0 fVCSΩIIΛVqMVΩVSMqVVCq TtiT

D
T ttiettt −−−++= −−− ωω ω&  (5.108) 

which is identical form with (5.103). In this second case the homogeneous solution is formed 
by the first two terms of (5.108). It is as mentioned above real valued. Now we can express 
real solution (solution describing real behavior of the system) as real part of complex solution 
(5.108). Let us take into account that  

titei ti
sc ωωω sincos   a  ˆ +=−= fff , (5.109) 

and so 

( ) { } ,sincosˆRecossinsincosˆ ttettitte sc
ti

scsc
ti ωωωωωω ωω ffffffff +=⇒−++=  (5.110) 

{ } ssc iii fffff ωωωωω =⇒+= ˆReˆ , (5.111) 

{ } csc i fffff =⇒−= ˆRe ˆ . (5.112) 

Following the last three relations we can write real part of the equation (5.108) in form 

( ) ( ) ( )

( ) ( ) ( ) ( )[ ] .sincos 112

0
1

0

c
T

s
T

sc
T

TT

tttt

ttt

fVCfVSΩffVIΛV

qMVΩVSMqVVCq

−−+−+

++=
−−

−

ωωωω

&
 (5.113) 

 

Example 5.2 
As an example let us present calculation of system response to the impulse excitation in two 
ways. The first presents the change of initial velocities caused by force impulse and the next 
computation corresponds to the free vibration with changed initial conditions. Let suposse that 
the equation of motion including initial conditions has form 

( ) ( ) ( ) ( ) ( ) ( ) ,0,0, 00 qqqqiKqqBqM &&&&& ===++ tttt δ  (5.114) 

where all symbols on the left hand side were explained above. The right hand side is formed 
by vector i multiplied by unit Dirac impulse. The vector i can express distribution of the 
impulse over the system. Further we suposse that the impulse takes for infinitely short time.  
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a) solution of free vibration by means of change of initial conditions 

 

Respecting the law of change of momentum we can compute a new vector of initial velocities  

( ) ( ) .1
00

1

00 iMqqiiiqMqM −+=⇒===− ∫∫ &&
321

&& dttdtt δδ  (5.115) 

The vector of initial displacements stays the same as the original one. Now we can solve the 
equation for free vibration of the system whose behaviour is described by differential equation    

( ) ( ) ( ) ( ) ( ) .0,0, 1
000 iMqqqqq0KqqBqM −+====++ &&&&&& ttt  (5.116) 

Substituting 0q&  into (5.50) instead of   0q& we can come to  

( ) ( ) ( ) ( ) ( )[ ]00
1

0 MqVDΩiVqMVΩSMqVCVEq TTT
D

T tttt +++= − & . (5.117) 

 

b) solution to forced vibration 

Replacing ( )τf  in (5.77) by ( )τδi we can write 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) .
0

1
00

1
0 ∫ −−+++= −−

t
T

D
TT

D
T dtttttt ττδττ iVSEVΩMqVDΩqMVΩSMqVCVEq &

 (5.118) 

Let us use a property of Dirac impulse 

( ) ( ) ( ).00∫
∞

∞−

=− tfdttttf δ  (5.119) 

Than integral in (5.118) will be equal to functional value of integrand in position 0=τ which 
can be written down as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,11

0

1 iVΩSVEiVSEVΩiVSEVΩ T
D

T
D

t
T

D ttttdtt −−− ==−−∫ ττδττ  (5.120) 

because diagonal matrices ( ) ( ) 1,, −
Dtt ΩSE commutate whole expression (5.118) takes a form 

( ) ( ) ( ) ( ) ( )[ ]00
1

0 MqVDΩiVqMVΩSMqVCVEq TTT
D

T tttt +++= − & , (5.121) 

which is expression identical with (5.117)  
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